Vv UMR“*

Voyager Core JMX Developer’s Guide

Version 1.0 for Voyager 8.0

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

Table of Contents

INtrOAUCTION Loiiiiiiiiiiiiiiiiii ettt e e 4
OV I VICW ettt ettt ettt ettt ettt et ettt e e eeeae e eeee e eeeiaeeeeeiaeeeeenss 4
PrefaC ittt eee e 4
IMX REQUITEIMENES uvveiiiiiiiiiiiiiiiiieiiiieieeeeee ettt et eeiee et eeeeeeeeiaaeeeee 4
Contacting Technical SUPPOIt ..ovveeeeueeeeeiiiiiieiiiiieieieeeeeeeeeeeeeee e, 4

MK OVOIVICW . eeeieuteieiieteee ettt ettt eeee ettt ettt ettt e e e e et eeieeeeeeiaeeeeeiiaeeeeeenns 5
Types of Management Beans (MBEaNS)........ccocuvviiiieueiiiiiieieiieiiiiieiieiieeieeieeeeene 5
The MBEANSEIVET...uueiiiiiuiiiiiiiiiiiiiiiiiiie e, 5
NOtITICAIONS . e uutitiiiiieiie ittt eeeeeeeeeeeeeeeeeeeeeeiiieeeeeeeeeeeiniaeeeeees 5

VOVAZEr MBEANS. ...ttt eerainee 5
VovagerAdmin MBEaAN......cuuueeviiiiiiiiiiiiiiiiiiiieeeeeiieeeee et 6
AuditService MBEAN.......ciiiiviiiiiiiiiiiiiiiiiii e 7
AuditServiceFileLoggerService MBean.........ooooeeeuveeeiiiiiiiiiiiiiiiiieeeeiiiieeeeeieeeeeeeeee 9
Distributed Garbage Collection MB@aN.........cccovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeen. 10
TepTranSport MBEaANuuuee e eeeeeeeeens 10
ROUNG MB@AN.....uvviiiiiiiiiiiiiiiiiiieii et eeeee e 11
UdpTransSport MBEAN.uueeiiiiiiiiiiiiiiiieiieeeeiiiiieieeeeeeeieeeeee e eeeieeieinennnn 12
DirectoryNamingService MBeaN..........ceceveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 13

YellowWPages MBEAN......uuuuveiiiiiiiiiiiiiiiiiiieeeeeeeieeeee et eeeeeeeeeeeeeeeiieeees 14
ORBSErver MB@aN.....uuiiiiiiiiiiiiiiiiiiiieiiiiiieiiee ettt 15
TepSubspace MBeaN. . ..coiiiieeiieiiiiieiieeeeeeee ettt 15
PeerGroupManager MBeaN........ueeiiieieiuueeiiiiiiiiiiiiiiiiiiiiieeieiiiiiieeee e 16
AgentPeer MBEaAN.......uvvviiiiiiiiiiiiiiiiiiiiieiieieeeeieiee e, 17
AgentSpace MBEaAN.....uueiiiiiiiiiiiiiiiiiiiiiiiiiiieee et 18
Management Of USEr AGENtS.....uuuuuiiiiiiiiiiiiieiiiiiiiiiiiiiiieiieiieeeeeeiiieeeeeeeeiieeeeeveeeiiiiieiinennns 19
IManagedAgent INtEIfaACE. ..uuuiiiiiiiiiiiiiiiiiiiiieeeeieee e 19
TA2entMX INtEITACE. ..eouueiiiiiiiiiiiiiiiii i 19
Emitted EVENTS....oiiiieueeiiiiiiiiiiiiiiiiiiiie oottt 19
Initializing JMX SUDDOIT wevviiiiiiiiiiiiiiiiiiiieeeeeeeieeieeeee e eeeeeeeiteeee et 21
USING JCONSOI. e uueeiiiiiiiiiiieiiiii ettt eeeeeeeaeeen 23
IV E X AT LES . ettt eesesesesesseseseseseseeeeeseeennsas 26

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

<This page intentionally left blank>

Introduction

Overview

Java Management Extensions (JMX™) provides a framework for Management Applications
to control and monitor Java applications. Applications are managed through interfaces
exposed as Management Beans. These Management Beans are similar to standard Java
Beans. JMX provides a rich set of features for managing all types of Java applications.

Preface

The purpose of this manual is to provide an introduction to basic JMX features as they
pertain to Voyager. This is not meant to be a treatise on JMX. This guide assumes a basic
knowledge of Java and distributed computing concepts.

This preface covers the following topics:

* JMX Requirements
* Contacting technical support

JMX Requirements
Before attempting to use the IMX features of Voyager.
* A Java runtime (JRE), J2SE 1.5 or higher, or the Java CDC Personal Profile 1.1
installed on your computer or PDA. For PCs and servers, you can download the

latest release of the JDK or JSE from java.sun.com at no charge.
* JMX is bundled with J2SE 1.5.

Contacting Technical Support

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

http://java.sun.com/

Recursion Software welcomes your problem reports, and appreciates all comments and
suggestions for improving VOY AGER. Please send all feedback to the Recursion Software
Technical Support department.

Technical support for VOY AGER is available via the web, email, and phone. You can
contact Technical Support by sending email to psupport@recursionsw.com or by calling
(972) 731-8800.

JMX Overview
Types of Management Beans (MBeans)

There are four types of MBeans: Standard, Dynamic, Model, and Open. All Voyager
MBeans are currently Standard MBeans. Further information concerning the types of
MBeans can be obtained from the JMX specification. A Standard MBean explicitly defines
its management interface by following naming conventions called design patterns in the JIMX
specification. The naming conventions are similar to the JavaBeans component model.
However, the conventions in JMX take into account the inheritance scheme of the MBean.
Standard MBeans are much simpler for management applications to access when compared
with other types of MBeans. MBeans provide access to application attributes (getter/setters)
and methods to perform control operations.

The MBeanServer

The MBeanServer is a key concept in JMX. The server object acts as a container of MBeans
and provides a common interface that all management applications must use to access the
MBeans. An ObjectName uniquely identifies each MBean within the server object. The
ObjectName is comprised of a domain name and application defined attributes. The domain
name usually follows the Java package name prefix conventions. All Voyager MBeans have
a domain name of com.recursionsw.ve.

Notifications

MBeans provide access to attributes and facilitate control operations. In addition, they can
also emit asynchronous notifications. This is a publish/subscribe style of messaging.
Interested receivers can register to be notified of particular events by specifying a filter, or
they can receive all events emitted by an MBean instance. Most of the Voyager MBeans
support notifications for relevant events.

Voyager MBeans

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.html
mailto:psupport@recursionsw.com

The following table lists the available MBeans for Voyager, and indicates their ObjectName
key properties. All Voyager MBeans are registered in the com.recursionsw.ve domain. A
detailed discussion of each MBean follows.

MBean (type=<column additional ObjectName key properties
value>,
vmm=<Voyager instance id>)
VoyagerAdmin
AgentPeer peerGroupName=<name of containing PeerGroup>,
peerName=<assigned name>
AgentSpace name=<assigned name>
PeerGroupManager agentSpaceName=<name of containing

AgentSpace>, peerGroupName=<assigned name>

AuditServiceConsoleLogService

AuditServiceFileLoggerService

AuditService

DirectoryNamingService

ORBServer url=<quoted url of associated transport server>

Routing

TcpSubspace name=<assigned name>, guid

TcpTransport

UdpTransport
DGC
YellowPages

Figure 1: Voyager MBean ObjectName key properties

VoyagerAdmin MBean

The VoyagerAdmin MBean provides the management behaviors for a Voyager instance. It
provides the capability to start and stop Voyager, configure Voyager, and register for log
events.

Naming

The name of the VoyagerAdmin MBean contains the “type” and “vm” attributes.

Lifecycle

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

The VoyagerAdmin MBean is registered during Management.startup() and deregistered
during Management.shutdowny().

MBean

void assignPropertyValue (String property, String value);
boolean checkLogTopicEnabled (String topic);

void disableLogTopic (String topic);

void disablelogTopics (String[] topics);

void enableLogTopic(String topic);

void enablelogTopics (String[] topics);

String getPropertyFileName () ;

String getStartupUrl () ;

String getUrl();

String getVersion();

boolean isStarted();

String [] retrieveAllProperties();

String retrievePropertyValue (String property);

void setPropertyFileName (String newPropertyFileName) ;
void setUrl (String newUrl) ;

void start();

void stop();

Emitted Events

ve.log.topic.<topic name> - for each log event for the given topic (logging for that topic must
be enabled in order to receive notifications for that topic).

AuditService MBean

The AuditService MBean provides configuration and control of the Voyager audit
subsystem. The management operations support adding remote Voyager audit subsystems as
parents or peers and breaking an established relationship.

See also the MBeans for managing the console and file loggers.

Naming

The name of the AuditService MBean contains the “type” and “vm” attributes.

Lifecycle

The AuditService MBean is registered during Voyager.startup() and deregistered during
Voyager.shutdown().

MBean

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

void connectParent (String parentURL) ;

void connectPeer (String peerURL) ;

void disconnectNeighbor (String neighborURL) ;

String getConnectionPolicy();

int getNeighborCount () ;

String[] getParentURLs () ;

String[] getPeerURLs () ;

void setConnectionPolicy(final String className)
throws ClassNotFoundException;

void stop();

void start();

Emitted Events

ve.audit.service.enabled - the AuditService is enabled.
ve.audit.service.disabled - the AuditService is disabled.
jmx.attribute.change — when the connection policy is changed.

AuditServiceConsoleLogService MBean

The AuditServiceConsoleLogService MBean provides management of the service that writes
audit records to the Voyager console. Its primary capability is to control the filtering of the
audit records output to the console.

Naming

The name of the AuditServiceConsoleLogService MBean contains the “type” and “vm”
attributes.

Lifecycle

The AuditServiceConsoleLogService MBean is registered during Voyager.startup() and
deregistered during Voyager.shutdown().

MBean

void addFilter (int outcome, boolean filterOn);
boolean getPrintDenialRecords () ;
boolean getPrintFailureRecords();
boolean getPrintSuccessRecords ()
int getRecordCount () ;

void resetFilters();

void setPrintDenialRecords (boolean enable);
void setPrintFailureRecords (boolean enable);
void setPrintSuccessRecords (boolean enable)
void start();

void stop();

void resetFilters|()

’

’

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

Emitted Events

ve.audit.service.enabled — the AuditServiceConsoleLogService is enabled.
ve.audit.service.disabled - the AuditServiceConsoleLogService is disabled.
jmx.attribute.change — when an attribute of AuditServiceConsoleLogService has
changed.

ve.audit.filterchange — The console logger’s filter configuration has changed.

AuditServiceFileLoggerService MBean

The audit file logging service, which is optional and not a default service, writes records
received by the Audit system to a file. Unlike the console log service, the audit file logging
service implements no filtering. The MBean that manages this service can configure the
directory for the log files, as well as the prefix and suffix to use for the files. The MBean also
indicates the current and previous audit files and the current record count.

Naming

The name of an AuditServiceFileLoggerService MBean contains the “type” and “vm”
attributes.

Lifecycle

The MBean is created when the audit file logger is configured. The audit file logger service
is optional and not, by default, created and initialized. The service is destroyed and its
MBean deregistered when Voyager shuts down.

MBean

String getCurrentFileName () ;

String getDefaultFileNamePrefix();

String getDefaultFileNameSuffix();

String getDirectory();

String getPreviousFileName () ;

long getRecordCount () ;

void setDefaultFileNamePrefix (String aFileNamePrefix)
void setDefaultFileNameSuffix (String aFileNameSuffix)
void setDirectory(String directoryName) ;

void stop ()

void startNewLogFile();

void start () ;

’
’

Emitted Events

ve.audit.service.enabled —the AuditServiceFileLoggerService is enabled.

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

ve.audit.service.disabled - the AuditServiceFileLoggerService is disabled.
jmx.attribute.change — when an attribute of AuditServiceFileLoggerService has
changed or the file logger has closed the old file, if any, and changed to a new file.

Distributed Garbage Collection MBean

The Distributed Garbage Collection (DGC) MBean controls Voyager’s distributed garbage
collection service.

Naming
The DGC object name contains the “type” and “vm” attributes.
Lifecycle

The DGC MBean is registered when Voyager starts, and deregistered when Voyager shuts
down.

MBean

long getLastCycleTime () ;

long getCycleTime () ;

void setCycleTime (long milliseconds)
long getDiscardDelay () ;

void setDiscardDelay(long milliseconds) ;
boolean getForceGC() ;

void setForceGC (boolean forceGC);
boolean getForceFinalization();

void setForceFinalization (boolean forceFinalization);
int getImportCount () ;

int getPendingCount () ;

String[] getImportXurls();

String[] getExportXurls();

String[] getExportsFor (String xurl);
String getImportActionsFor (String xurl);

Emitted Events

ve.messageprotocol.vrmp.dgc.discarding — An object is being garbage
collected.

ve.messageprotocol.vrmp.dgc.exporting — An object has been registered with
DGC (DGC enabled).

TcpTransport MBean

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

The TcpTransport MBean serves to monitor, configure, and control the TcpTransport service
and its related connections and servers.

Naming
The TcpTransport MBean object name contains the “type” and “vm” attributes.
Lifecycle

The TcpTransport MBean is registered during Voyager.startup() and deregistered during
Voyager.shutdown().

MBean

void closeConnections (String xurl);
int getActiveCount () ;

String[] getConnectionURLs () ;

int getIdleCount();

String getProtocol();

String[] getServerURLs () ;

int retrieveActiveCount (String xurl);
int retrievelIdleCount (String xurl);
void stop ()

void start () ;

void startServer (String xurl) throws IOException;
void stopServer (String xurl);

void addMultiHomeHost (String host);

Emitted Events

ve.transport.server.stopped — A TCP transport server has been stopped.
ve.transport.server.started — A TCP transport server has been started.
ve.transport.server.connection.failed — TCP server side connection failed.
ve.transport.connection.opened — A TCP transport connection has been opened.
ve.transport.connection.closed — A TCP transport connection has been closed.
ve.transport.connection.released — A TCP transport connection was released.
ve.transport.connection.failed — A TCP transport connection failed.
ve.transport.connection.acquired — A TCP transport connection was acquired.

Routing MBean

The Routing MBean serves to monitor, configure, and control the Routing service and its
related connections and servers.

Naming

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

The Routing MBean object name contains the “type” and “vm” attributes.
Lifecycle

The Routing MBean is registered during Voyager.startup() if routing is enabled and
deregistered during Voyager.shutdown().

MBean

void closeConnections (String xurl);
int getActiveCount () ;

String[] getConnectionURLs () ;

int getIdleCount();

String getProtocol ()

String[] getServerURLs () ;

int retrieveActiveCount (String xurl);
int retrieveIdleCount (String xurl);
void stop();

void start();

void startServer (String xurl) throws IOException;
void stopServer (String xurl);

void addMultiHomeHost (String host);
String getRouterAddress();

Emitted Events

ve.transport.server.stopped — A Routing transport server has been stopped.
ve.transport.server.started — A Routing transport server has been started.
ve.transport.server.connection. failed — Routing server side connection
failed.

ve.transport.connection.opened — A Routing transport connection has been
opened.

ve.transport.connection.closed — A Routing transport connection has been
closed.

ve.transport.connection.released — A Routing transport connection was
released.

ve.transport.connection. failed — A Routing transport connection failed.
ve.transport.connection.acquired — A Routing transport connection was
acquired.

UdpTransport MBean

The UdpTransport MBean serves to monitor, configure, and control the UdpTransport
service and its related connections and servers.

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

Naming
The UdpTransport MBean object name contains the “type” and “vm” attributes.
Lifecycle

The UdpTransport MBean is registered during Voyager.startup() and deregistered during
Voyager.shutdown().

MBean

void closeConnections (String xurl);

int getActiveCount () ;

String[] getConnectionURLs () ;

int getIdleCount();

String getProtocol ();

String[] getServerURLs();

int retrieveActiveCount (String xurl);

int retrievelIdleCount (String xurl);

void stop();

void start();

void startServer (String xurl) throws IOException;

void stopServer (String xurl);

int getMaximumMessageSize () ;

int getServerMessageBufferSize();

String getSocketPolicyManagerClass();

void setMaximumMessageSize (int size);

void setServerMessageBufferSize (int bufferSize);

void setSocketPolicyManagerClass (String className)
throws ClassNotFoundException;

Emitted Events

ve.transport.server.stopped — A UDP transport server has been stopped.
ve.transport.server.started — A UDP transport server has been started.
ve.transport.server.connection.failed — UDP server side connection failed.
ve.transport.connection.opened — A UDP transport connection has been
opened.

ve.transport.connection.closed — A UDP transport connection has been closed.
ve.transport.connection.released — A UDP transport connection was released.
ve.transport.connection.failed — A UDP transport connection failed.
ve.transport.connection.acquired — A UDP transport connection was acquired.

DirectoryNamingService MBean

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

The DirectoryNamingService MBean provides monitoring and management for Voyager’s
primary naming service.

Naming
The DirectoryNamingService object name contains the “type” and “vm” attributes.
Lifecycle

The DirectoryNamingService MBean is registered when Voyager starts, and deregistered
when Voyager shuts down.

MBean

String[] getKeys(String lookupkey)
void unbind(String lookupkey)

Emitted Events

ve.directory.bind — A directory entry was bound.
ve.directory.rebind — A directory entry was rebound.
ve.directory.unbind - A directory entry was unbound.

YellowPages MBean

The Yellow Pages Directory service provides a mapping between a service description,
consisting of one or more name-value service attributes, and a service. The YellowPages
MBean provides configuration and control of a YellowPages instance (a member of the
federated Yellow Pages directory service).

Naming
The YellowPages object name contains the “type” and “vm” attributes.
Lifecycle

The YellowPages MBean is registered when Voyager starts, and deregistered when Voyager
shuts down.

MBean

void disconnect () ;

int getNeighborCount () ;

int getServiceCount () ;

long getDefaultDiscoveryRequestTTL () ;

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

long getDiscoveryRequestMarkerExpirationDelay () ;

void setDefaultDiscoveryRequestTTL (long delay);

void setDiscoveryRequestMarkerExpirationDelay(long delay);
void terminateAllDiscoveryRequests();

Emitted Events

ve.yp.serviceregistration — A service description was added or removed.
ve.yp.connection— A connection to a remote YellowPages directory was opened or
closed.

ORBServer MBean

The object request broker (ORB) is created by and contained within a transport server. The
ORBServer MBean provides monitoring and control of an ORB instance.

Naming

The ORBServer object name contains the “type”, “vm”, and “url” attributes (the URL being
the URL of the transport server).

Lifecycle

The managed object is created at the same time as the containing transport server, and
destroyed when the containing transport server is destroyed. The MBean for the ORB
follows the ORB’s lifecycle.

MBean

boolean checkRegistered(int id);
int getRegisteredCount () ;

String getServerUrl () ;

TabularData retrieveSummaryInfo () ;
void unregister (int id);

Emitted Events

None.

TcpSubspace MBean

A Voyager Space is a concept realized by one or more Subspaces. The TcpSubspace MBean
manages a TcpSubspace (a Subspace of a Space whose connections are based on TCP).

Naming

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

29 ¢ 2 ¢

The TcpSubspace object name contains the “type”, “vm”, “name”, and “guid” attributes. If
the space is unnamed, the “name” attribute value will be the string “Anonymous Space”.

Lifecycle

TcpSubspaces are created and destroyed by the application and, for internal use, by Voyager.
The MBean for the TcpSubspace follows the TcpSubspace’s lifecycle.

MBean

int getListenerCount () ;

int getMemberCount () ;

int getNeighborCount () ;

int getMarkerCount () ;

long getMarkerLifetime () ;

int getQueueSize();

long getTimeOfLastPurge () ;
void purgePropagationQueue () ;

Emitted Events

ve.space.add — An object was added to the subspace.

ve.space.connected — A neighbor was connected to the subspace.
ve.space.connecting — A neighbor is being connected to the subspace.
ve.space.disconnected — A neighbor was disconnected from the subspace.
ve.space.disconnecting — A neighbor is being disconnected from the subspace.
ve.space.purging — The subspace is purging dead/disconnected neighbors, children,
and contents.

ve.space.removing — An object was removed from the subspace.

PeerGroupManager MBean

The managed object, a PeerGroupManager instance, is responsible for managing the
AgentPeers in a PeerGroup. The PeerGroupManager MBean provides monitoring of, and the
ability to terminate, the PeerGroupManager.

Naming

29 ¢

The PeerGroupManager object name contains the “type”, “vm”, “agentSpaceName” and
“peerGroupName” attributes.

Lifecycle

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

A PeerGroupManager is created and destroyed by the application and its MBean follows its
lifecycle.

MBean

String getAgentSpaceName () ;

String [] getAgentPeerNames () ;
String getPeerGroupName () ;

int getAgentPeerCount () ;

long getLastHeartbeatTime () ;

long getCyclesBeforeDisconnection () ;
long getCycleTime () ;

long getLastCycleTime () ;

void stop();

Emitted Events

ve.agentspace.events.agentpeerdisconnectedevent — An Agent Peer has been disconnected
from the peergroup due to connection failure.

ve.agentspace.events.agentpeerjoiningevent — An Agent Peer is joining the peergroup.
ve.agentspace.events.agentpeerleavingevent — An AgentPeer is leaving the peergroup.
ve.agentspace.events.peergroupjoiningevent — The PeerGroupManager is joining an
AgentSpace.

ve.agentspace.events.peergroupleavingevent —The PeerGroupManager is leaving an
AgentSpace.

AgentPeer MBean

The managed object, an AgentPeer, hosts and executes agents, receiving them from the
PeerGroupManager it is registered with. An “agent” is an instance of the Agent class with an
application-specified realization of IAgentAction. The MBean for an AgentPeer provides
monitoring of the AgentPeer and limited control of the AgentPeer and associated agents.

Naming

2 ¢

The AgentPeer MBean object name contains the “type”, “vm”, “peerGroupName” and
“peerName” attributes.

Lifecycle

An AgentPeer is created and destroyed by the application. The MBean follows the lifecycle
of the AgentPeer it manages.

MBean

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

int getAgentCount () ;

String getGroupName () ;

String getPeerName () ;

String[] getAgentGuids();

String getAgentInfo (String guid);

void interruptAgentExecution (String guid) ;
void stop();

Emitted Events

ve.agentspace.events.agentarrivalevent — An agent has arrived at the peer.
ve.agentspace.events.agentexecutionendevent — An agent has finished execution.
ve.agentspace.events.agentexecutionerrorevent — An internal error occurred during
deployment/execution of an agent.

ve.agentspace.events.agentexecutionfailureevent — An executing agent failed due to an
agent exception or timeout.

ve.agentspace.events.agentexecutionstartevent — An agent has started execution.
ve.agentspace.events.agentexecutiontimeoutevent — An executing agent has timed out.
ve.agentspace.events.agentscheduledevent — An agent has been scheduled for execution.
ve.agentspace.events.agentpeerheartbeatevent — The agent peer is notifying its
PeerGroupManager it is alive.

AgentSpace MBean

The managed object, an AgentSpace, provides the primary interface for interacting with an
AgentSpace.

Naming

99 <6

The AgentSpace MBean object name contains the “type”, “vm”, and “name” attributes.
Lifecycle

An AgentSpace is created and destroyed by the application. The MBean for the AgentSpace
follows the AgentSpace’s lifecycle.

MBean
String getAgentSpaceName () ;

String[] getPeerGroupNames () ;
void stop();

Emitted Events

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

ve.agentspace.events.createpeergroupmanagerevent — A PeerGroupManager has been
created.

ve.agentspace.events.createagentpeerevent — An AgentPeer has been created.
ve.agentspace.events.createagentevent — An agent has been created.

Management of User Agents

User agents are required to implement the IManagedAgent interface (which serves to provide
the management bean for the agent). The associated MBean is required to implement the
[AgentMx' interface.

A managed application-specific agent can be any of the following.
* A Java object that has been exported
* An AgentSpace action
* A class with an agent facet

Naming
The application-specific agent’s MBean domain name, returned by IAgentMx’s

getDomainName(), cannot begin with “com.recursionsw”. Voyager imposes no other
restrictions on the MBean name.

IManagedAgent interface

An AgentFacet agent that wants to be managed automatically should implement this interface. It
defines a single method:

IAgentMx getManagementBean() ;

This method returns the management agent for the agent.

TAgentMx interface

String getDomainName () ;
com.recursionsw.lib.container.Pair[] getKeyProperties();

Emitted Events

Voyager will emit no events related to an application-specific Agent or Agent MBean. The
application-specific Agent is free to emit application-specific events.

' The MBean’s management interface should not extend IAgentMx, the bean should implement IAgentMx as
well as its management interface.

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

Example

To illustrate how an object used as an agent might be managed; we will add the necessary
interfaces and classes to the current Voyager Agentsl example. The Agents1 example uses
the stock market Trader class as the agent. To the Trader class needs to implement the
IManagedAgent interface. We must also create the related MBean interface and
implementation, which we will name ManageTrader and ManageTraderMBean,
respectively.

The class diagram in Figure 2 shows the relationships among these classes.

1EntityMx

<< getter==+getkeyProperties : Pair'[]"

IManagedAgent (
<<<getters=+gethManegementFeang D A gentMx
"{I} lAgentMx e TraderManagenent BeanM Bean
| << gettars==+getDomainNam e | String << getter=s+getTraderHomed | String
| 2 ~
ITtader % >

| ! P

I \ "

\ % -

\ s
Trader =Maragenenttean Trader ManagementBean

<= getter=>=+getDomainMamed : String
<=<constructors=>+TraderManagementBean{ home : String)
<< getter=>=+getkeyPropertiesd : Pair'[]"

<= getter=>+getTraderHomed : 5tring

Agents1

+mainf args : string"[1" 3 : void

Figure 2: Class diagram for managed Agents1 example

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

The sequence diagram shown in Figure 3 illustrates both setting up the agent for management
and, as the agent cleans up, disabling management of the agent.

: Agents1 : MBeanServer ('_)

—— — : Trader

|
T |~ E e{ : Trader Management Bean !
T |

|

|

|
o 33 registerﬁgent(agentﬁ)

| 4: getDomainMamed

|
|
|
|
|
|

; |

5: getkeyProperties)

|

& registerfBeaniobject=, nam e_=}
-

|

|
|
8. unregisterilBeaniname=) . |

- — =

7: deregistepfhgent{agent=)

- — = = =

|
|
|
|
Figure 3: Start/Stop managing the Agents1 example.

Initializing JMX Support

Voyager’s IMX support must be initialized before it can be used. To do this, call one of the
com.recursionsw.ve.jmx.Management.startup() methods prior to calling Voyager.startup()*.
An application using JXM must set Voyager to default to Java’s serialization. Other
serialization options may or may not support serialization of JMX objects.

Your application has the choice of supplying the MBeanServer to be used or of allowing
Voyager to locate or create the MBeanServer to be used. For example:

import javax.management.MBeanServer;

import com.recursionsw.ve.StartupException;
import com.recursionsw.ve.Voyager;
import com.recursionsw.ve.jmx.Management;

? Please note that the ve-jmx.jar archive must be in the classpath

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

try

{
MBeanServer mbs = Management.startup();
VrmpSerialization.selectJavaDefaultSerialization();
Voyager.startup () ;

}
catch (StartupException e)

{

e.printStackTrace () ;

}
This code performs the following:

* Locates or creates an MBeanServer (uses the platform MBeanServer if available)
* Registers a VoyagerAdminMBean instance in the MBeanServer

e Sets the default object serialization implementation to Java

* Initializes Voyager

The VoyagerAdminMBean can now be accessed via the MBeanServer object. Invoking
MBean methods can be cumbersome due to the reflective invoke() method of the
MBeanServer. However, if Standard MBeans are being used (which is the case with
Voyager) then a convenient proxy can be created to ease MBean invocation. For example
(modified from IMXExample2):

Management.startup() ;
VrmpSerialization.selectJavaDefaultSerialization();

VoyagerContext vc = Voyager.startup():;

ServerContext serverContext = vc.acquireServerContext ("server8000");
serverContext.startServer ("//localhost:8000") ;

ClientContext clientContext = vc.acquireClientContext ("server80001") ;
clientContext.openEndpoint ("//localhost:8001") ;

try |

IVoyagerAdmin admin = Management.getVoyagerAdmin (clientContext) ;
MBeanServerConnection remoteServer = admin.getMBeanServer () ;
if (remoteServer != null) {

Set set = remoteServer.queryNames (

new ObjectName (Management.DEFAULT DOMAIN +
":type=TcpTransport,*"), null);
Iterator iter = set.iterator();
if (iter.hasNext()) {
ObjectName name = (ObjectName) iter.next();

TcpTransportMxMBean transportMBean = (TcpTransportMxMBean)
JMXUtil.newProxy (remoteServer, name,
TcpTransportMxMBean.class) ;
String [] urls = transportMBean.getServerURLs() ;

}
}
} catch (Exception e) {
e.printStackTrace () ;

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

} finally {
vc.shutdown () ;
Management.shutdown () ;

}

This example initializes the JMX support, starts Voyager, accesses the MBeanServer of
another managed Voyager instance, searches for the remote Voyager’s TcpTransport MBean,
and invokes the getServerURLs() method on the located MBean.

Using JConsole

JConsole is a JMX management console that ships with Java 5 and higher. It allows a user to
view and modify MBean attributes, perform invocations on MBean methods, and view event
notifications. One running instance of JConsole can manage multiple nodes. In order to
remotely manage a node, that node must have a JIMXConnectorServer running. A
JMXConnector server can be started in one of three ways:

1.Programmatically:

/* Example of starting an RMI connector using Voyager as the RMI
* registry and JNDI provider. */

import java.util.Properties;

import javax.management.MBeanServer;

import javax.management.remote.JMXConnectorServer;

import javax.management.remote.JMXConnectorServerFactory;
import javax.management.remote.JMXServiceURL;

import com.recursionsw.ve.Voyager;

import com.recursionsw.ve.jmx.Management;

public class JMXConnectorServerTest {

public static void main(String[] args) throws Exception ({

MBeanServer server = Management.startup();

VoyagerContext vc = Voyager.startup():;

ServerContext serverContext = vc.acquireServerContext ("server8000");

serverContext.startServer ("//myhost:8000") ;

Properties environment = new Properties();

environment.put ("java.naming.factory.initial",
"com.recursionsw.ve.jndi.spi.VoyagerContextFactory") ;

environment.put ("java.naming.provider.url", "//myhost:8000/");

// The address of the connector server
JMXServiceURL address = new JMXServiceURL (
"service:jmx:rmi:///jndi/rmi://myhost:8000/server");

// Create the JMXCconnectorServer
JMXConnectorServer cntorServer =
JMXConnectorServerFactory.newJMXConnectorServer (
address, environment, server);

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

// Start the JMXConnectorServer
cntorServer.start () ;

2.Via command line options (when the platform MBeanServer is used)

To enable remotely (without SSL):

java -Dcom.sun.management.jmxremote
-Dcom. sun.management.jmxremote.port=<port>
-Dcom. sun.management.jmxremote.ssl=false MyApp

To connect locally only:

java -Dcom.sun.management.jmxremote

3.Via dynamic attach
a.The Java 6 version of JConsole must be used.

b.The node must be running Java 6.
c.The node to be managed must be local.
d.The platform MBeanServer must be used.

ava Monitoring & Management Console

Connection Window Help

B pid: 2508 com.ve.test.Manag

Overviewl Memoryl Threadsl Classesl WM Summary MBeans I

{:I MImplementation
[543 com recursionsw.ve
-_] AuditService

Ea CRBServer

D TepTranspork
+)-_| UdpTransport
=1 Voyageradmin
Aktributes
Cperations

- Matifications
[]--{:l £, SUN. management
-] java.lang

[1-{_] java.util.logging

] AudiServiceConsoleLogService

D DirectoryMamingSetvice

Operations

=101 |
d: 2424 com.ve.test.Manageme:] =101x]
Overview | Memory | Threads | Classes | ¥M Summary MBeans | s
[#-[__| MImplementation IMBeaninfo
[=]-£3] Com. recursionsw. ve N T
[_] Auditservice TnFo:
[AuditserviceConsolel agService Objecthlame com.recursionsw, veurl="tcp:{/d...
% DFC . . Classtame corn,recursionsi, ve.orth, ORBSer,
[MBeaninfa e LAl R Description InFormation on the management ...
[=}-.=3 ORBServer .
Mar T 4 e ffedebdon-2ki 2270 Constructor-0:
N L] T Glhablali 2 Mamne com,recursionsi,ve ot ORBSer,,
ObjeCtName Diacrrirkinm Ouiblic mamckeockar oF Fha BB :n_
Classhame tiribute IConsole: New Connection x|
= peration B
Description D TepTransport (|
Constructor-0:) UdpTransport] :E’ (|
e _ £ (@ voyagerhdnin New Connection e
Drescripkion +]- dttributes avd
Farameter-0-0; ==
Marne _‘
Description] i+ Local Process: L]
Tvpe [javalang Namne I FID | 1
(-] java.util.logging corn, ve test. ManagernentStartupEsample 2508 [
rDescriptar—— caom.ve.test. ManagementStartupExample 2296 G
Tan startup.jar -0s win3Z2 -ws win3Z -arch x36 -launcher Cecl. .. ZETR
COMTTL e b Management StartupExample 2424
nfo; -
sun.tools. joonsole, JConsole 2584
immutableInfo
inkerfaceClassh
mxbean " Remote Process:
| Usage: =hostname=:=port= OF service:jms: =protocol=: =sap= e

Figure 4: JConsole (Java 6) managing multiple VMs

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

For more information on using JConsole, please refer to
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html.

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

JMX Examples

The JIMX examples demonstrate initialization of Voyager JMX management, access to local
and remote Voyager MBeans, and implementation of managed agents. These examples
require Java 5 or higher, or a Java 1.4 runtime with JMX 1.2 installed.

JMXExamplel

The JvxExamplel program demonstrates JMX management initialization and access to local
Voyager MBeans, specifically the TCP or Bidi transport in this case.

JMXExample2

The JMxExample2a and Basics2b programs demonstrate access to remote Voyager MBeans
using the IVoyagerAdmin interface, specifically the TCP or Bidi transport in this case.

ManagedAgents

The Managedagentsl program illustrates creating and using an agent with JMX management
support. It is essentially a clone of the Agentsl example.

Source code location

The examples can be found under the %VOYAGER HOME%\examples\java\se-cdc
directory.

Java
javal\examples\imx\IMXExamplel.java

java\examples\jmx\JMXExample2a.java
java\examples\jmx\JMXExample2b.java

java\examples\managedagents\ITrader.java
java\examples\managedagents\Trader.java

java\examples\managedagents\TraderManagementBean.java
java\examples\managedagents\TraderManagementBeanMBean.java

java\examples\managedagents\ManagedAgents1.java

Copyright © 2006 - 2011 Recursion Software, Inc.
All Rights Reserved

