
Voyager Core Developer’s Guide

.NET Compact Framework
Version 1.0 for Voyager 8.0

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Table of Contents

Overview..6
Preface..6

Common Definitions ...6
Voyager Development Requirements ...7
Voyager Installation Directories..7
Deploying Voyager Applications..8
Contacting Technical Support ...8

Feature Summary...8
Architectural Flexibility...8

Voyager Features...8
Remote-Enabling of Classes..8
Remote Object Construction..9
Dynamic Class Loading...9
Remote Messaging...9
Remote Exception Handling..9
Distributed Garbage Collection...9
Dynamic Aggregation™..9
SOAP and WSDL Support...10
Object Mobility..10
Autonomous Intelligent Mobile Agents...10
Task Management..10
Advanced Messaging...10
Security..10
Naming Service..11
Yellow Pages Directory...11
Multicasting...11
Publish-Subscribe..11
Timers..11
Multi-home Support...11
TCP Connection Management ..11

Core Features...12
Overview..12
Using Interfaces for Distributed Computing..12
Creating or Retrieving a ClientContext...13
Creating or Retrieving a ServerContext...13
Creating a Remote Object..14
Sending Messages and Handling Exceptions..15
Logging Information to the Console ...16
Understanding Distributed Garbage Collection...16

DGC Notification ..17
DGC Discard Delay Configuration ...17

Using Naming Services ...17
Working with Proxies..18

Special Methods...19

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Exporting Objects..20
Working with Federated Directory Services ...21
Task and Thread Management...22
Timers..22

Clocking Time Intervals ...22
Using Timers and TimerEvents ..24
Constructing a Timer...24
Setting a Timer...24
Adding a Listener to a Timer...25

Voyager .NET Compact Framework Basics...26
Starting and Stopping a Voyager Program ...27
Type Resolution in .NET CF...28

Understanding Assembly Loading...28
Creating Proxy Classes..29
Creating and Deploying a Voyager Smart Device Application.....................................29
Using Vgen to Generate Interfaces..30

Advanced Features..30
Advanced Messaging...31
Invoking Messages Dynamically ..31

Synchronous Messages..31
One-Way Messages...32
Future Messages...33
Retrieving Remote Results by Reference ...35

Dynamic Discovery...35
Generic Application Programming Interface...35
Using the Generic API...36
Implementing Dynamic Discovery..37
Using UDP Dynamic Discovery Implementation..37

Using Multicast and Publish/Subscribe ..38
Understanding the Space Architecture...38
Understanding the Space Implementation...39
Using TCP Spaces..39

Space Topologies...39
Creating and Populating a Space...40

Nested Spaces..41
Subspace Event Listeners..41
Multicasting...42
Publishing and Subscribing Events..42
Administering a Space...43

Yellow Pages Directory...46
Creating a Yellow Pages Directory..47
Registering a Service...48
Performing a Yellow Pages Lookup..49
Using a Discovery Listener..50

Using UDP as a messaging transport...50
Using custom object streamers..51

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Voyager Administration...51
Configuration and Management..51
Understanding Voyager Properties ...52
Connection Management...53

Understanding Connection Management Policies ..53
Understanding Case Policies ...54
Maximum Number of Server Connections..54
Maximum Number of Client Connections...54
Maximum Number of Idle Client Connections...54
Client Connection Idle Time..55
Server Connection Idle Time...55
Establishing Case Policies for RangeConnectionManagementPolicy55
About HostAddressRange..55
Examples..56

Setting the Global CasePolicy...56
Setting Case Policies..56
ServerSocket Policies ..57
Adding Custom Sockets to Voyager ...57

Appendices...58
Appendix A – Compact Framework Deployment...58
Appendix B – Utilities...58

Overview..58
pgen4csharp ..59

pgen4csharp Command Line Options..59
vgen..60

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

<This page intentionally left blank>

Overview
The vision behind Voyager is to make distributed applications easier to design, develop
and deploy across multiple operating systems, languages, and devices. Voyager has an
extensive set of services and features for distributed application development and
deployment, and its APIs are easy to learn and use. Voyager’s advanced capabilities,
flexibility, and extensibility give you the freedom to design applications based on your
needs. You can fit Voyager to your architecture instead of contorting your architecture to
fit Voyager.

Preface
This manual provides detailed information about the features available in Voyager. This
guide assumes basic knowledge of distributed computing concepts and familiarity with
the C# programming language.

This preface covers the following topics:

• Definitions

• Voyager development requirements

• Voyager installation directories

• Deploying Voyager applications

• Contacting technical support

Common Definitions

JME — Java Micro Edition. In reference to running Voyager this term implies a
supported version and configuration for the JME.

JSE — Java Standard Edition. In reference to running Voyager this term implies a
supported version and configuration for the JSE.

.NET — Microsoft .NET Framework. In reference to running Voyager this term
implies a supported version and configuration for the Microsoft .NET
Framework.

CF — Microsoft .NET Compact Framework. In reference to running Voyager this
term implies a supported version and configuration for the Microsoft .NET
Compact Framework.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 6 of 60

VM — Virtual Machine. This term refers generically to a supported Voyager
execution environment – either a Java Virtual Machine or a .NET Common
Language Runtime environment.

Voyager Development Requirements

To develop with Voyager, ensure that you have:

• A Java Development Kit (JDK) 1.4.2 or later for Java development. You can
download the JDK from java.sun.com free of charge.

• The Microsoft .NET Common Language Runtime 2.0 is required for .NET
development (C#, VB.NET, or C++/CLI). You can download the .NET
Framework 2.0 from microsoft.com/downloads free of charge.

• Currently, development for the .NET Compact Framework is supported for the
PocketPC.

Voyager Installation Directories

The directory structure of Voyager follows:

.\ Voyager readme, install, changes, environment, copyright,
and license text files.

bin\ Utilities and other binary files.

bin\wizard\ Voyager Wizard application for Java rules-based
development.

doc\ Developer guides and user guides.

examples\ Example files organized by programming language /
environment.

Platform\android\ Android libraries

platform\cdc\ JME CDC API documentation and libraries

platform\cldc\ JME CLDC/MIDP 2.0 API documentation and libraries.

platform\dotNET\ .NET (via ikvm) API documentation and assemblies.
(deprecated)

Platform\iphone\ iPhone API documentation and assemblies.

platform\jse\ API documentation for JSE and .jar files for Java
Standard Edition. Includes 3rd-party files.

licenses\ Licenses for 3rd-party products Voyager uses.
platform\windows-dotnet\ .NET API documentation and assemblies.
platform\windows-mobile\ Compact Framework API documentation and assemblies.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 7 of 60

http://www.microsoft.com/downloads
http://java.sun.com/

Deploying Voyager Applications

Once you have written a Voyager application selected files will be needed for your
deployment. See the detailed discussion in Deployment.

Contacting Technical Support

Recursion Software welcomes your problem reports and appreciates all comments and
suggestions for improving Voyager. Please send all feedback to the Recursion Software
Technical Support department.

Technical support for Voyager is available via email and phone. You can contact
Technical Support by sending email to psupport@recursionsw.com or by calling (972)
731-8800.
Note: When submitting an issue via email, if you have a Customer Support ID be sure to
include it on the first line of the message body.

Feature Summary
Following is an outline of Voyager features and capabilities. This summary covers all
languages/environments; some features may not be available in certain
languages/environments:

Architectural Flexibility
Voyager components can be extended or replaced to integrate into a customer's existing
computing infrastructure. For example, you can add a new communication protocol to
communicate across a proprietary internal network. In addition, Voyager supports
multiple distributed architectures including client-server, peer-to-peer, agent-based,
pub/sub or message-oriented, or any combination thereof.

Voyager Features
Voyager provides a complete set of features for distributed application development,
including the following:
Remote-Enabling of Classes

Java and .NET interfaces can be remote-enabled without being modified in any way, and
no specialized additional files are necessary to remote-enable an interface. Thus, there is
no difference between a "regular" Java/.NET interface and a remote-enabled interface.
Interfaces may also be explicitly remote-enabled by declaring them to implement
recursionsw.voyager.IRemote or com.recursionsw.ve.IRemote. In Java JSE,
JME and Microsoft .NET environments, proxy classes are constructed dynamically at

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 8 of 60

mailto:psupport@recursionsw.com

runtime. Microsoft .NET Compact Framework and Java CLDC environments do not
support runtime generation of classes; for these environments Voyager provides a proxy
generation tool.

Remote Object Construction

You can create a remote instance of any class on any Voyager VM.

Dynamic Class Loading

Voyager allows classes to be loaded at runtime from one or more remote locations. This
allows you to easily set up class repositories for Java and assembly repositories for .NET
that serve your corporate applications, simplifying deployment and maintenance.

Remote Messaging

Method calls to a Voyager proxy are transparently forwarded to its object referent. If the
object is in a remote VM, the arguments are serialized and sent using the appropriate
messaging protocol to the destination, where they are deserialized. The morphology of
the arguments is maintained. If an object's class implements
recursionsw.voyager.IRemote (or com.recursionsw.ve.IRemote) the object is
passed by reference. If an object's class implements com.recursionsw.ve.VSerializable (or
java.io.Serializable), it will be passed by value. Objects that implement none of
these interfaces are passed by reference.

Remote Exception Handling

If a remote exception occurs, it is caught at the remote site, returned to the caller, and
rethrown locally. If the appropriate logging level is selected, a complete stack trace is
written to the Voyager logging console.

Distributed Garbage Collection

The distributed garbage collector (DGC) automatically reclaims objects when there are
no more remote references to them. This eliminates the need to explicitly track remote
references to an object. The DGC mechanism uses an efficient "delta pinging" algorithm
to minimize the traffic required for distributed garbage collection. You can also fine-tune
the behavior of the distributed garbage collection mechanism and receive notification of
DGC events.

Dynamic Aggregation™

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 9 of 60

Dynamic aggregation complements the traditional object-oriented mechanisms of
inheritance and polymorphism. This feature allows you to dynamically add secondary
objects (termed facets) to a primary object at runtime. For example, you can dynamically
add hobbies to an employee, a repair history to a car, or a payment record to a customer.
The source code for the primary object is decoupled from the code for its facets,
simplifying your object model.

SOAP and WSDL Support

Voyager provides support for exposing and accessing SOAP services on Java and .NET.
Voyager also provides dynamic WSDL generation for description of Web Services
exposed, and a proxy generator for accessing remote WSDL described services.

Object Mobility

You can easily move any serializable object between Voyager VMs at runtime. Voyager
automatically tracks the current location of the object. If a message is sent from a proxy
to an object's old location, the proxy is automatically updated with the new location and
the message is re-sent. Object mobility is useful for optimizing message traffic in a
distributed system.

Autonomous Intelligent Mobile Agents

Voyager supports the creation of mobile, autonomous agents that can be deployed to a
VM and execute on arrival (Java and .NET environments). Agents can also move
themselves between VMs and continue to execute upon arrival at a new location.
Complex intelligent behavior can be written using the Voyager Wizard to construct rules
that can run in a remote VM.

Task Management

Voyager uses a task management framework to balance workload and prevent the
application from being overloaded by threads. User code can leverage this API.

Advanced Messaging

You can send one-way, synchronized, and future messages. One-way invocations return
to the caller immediately after sending the message; any return value or exception is
discarded. Future messages immediately return a placeholder to the result, which may
then be polled or read in a blocking fashion.

Security
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 10 of 60

For Java environments, Voyager provides an enhanced Java Security Manager that
supports remote permissions. Remote permissions can be assigned to privileged code to
prevent execution by unauthorized clients.

For Java and .NET environments, Voyager provides socket factories for installing custom
sockets such as SSL.

Naming Service

Voyager's naming service provides a single, simple interface that unifies access to
standard naming services. New naming services can be dynamically plugged into
Voyager's naming service.

Yellow Pages Directory

Voyager's yellow pages directory (Java and .NET environments) complements the
Naming Service. It supports lookup of a service based on one or more attributes or
characteristics. The location and identity of the service does not need to be known at
lookup time.

Multicasting

You can UDP multicast (Java and .NET environments) a message to a distributed group
of objects without requiring the sender or receiver to be modified in any way.

Publish-Subscribe

You can publish an event on a specified topic to a distributed group of subscribers. The
publish-subscribe facility supports server-side filtering and wildcard matching of topics.

Timers

A Stopwatch and Timer class facilitate common timing chores. Timer events can be
distributed and multicast if necessary.

Multi-home Support

Voyager supports multi-homed systems. A multi-homed system is one with multiple
hostnames/IP addresses.

TCP Connection Management

Connection management services allow you to manage the number of live and idle
connections for a Voyager server to prevent server or client throttling.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 11 of 60

Core Features
Overview
This chapter covers all the features of Voyager that are required to build a simple
distributed application.

In this chapter, you will learn to:

• Use interfaces for distributed computing

• Create a remote object

• Send messages and handle exceptions

• Log information to the console

• Understand distributed garbage collection

• Use the naming service

• Work with proxies

• Export objects

• Use the federated directory service

• Understand Voyager’s task manager to control tasks

• Use the timer and stopwatch utilities

Using Interfaces for Distributed Computing
The Java and .NET languages support interfaces. An interface contains no code. It
defines a set of method signatures that must be defined by the class that implements the
interface. A variable whose type is an interface may refer to any object whose class
implements the interface. By convention, Voyager interfaces begin with I. Your code
does not need to follow this convention. An example of an interface follows:

public interface IStockmarket
 {
 int quote(String symbol);
 int buy(int shares, String symbol);
 int sell(int shares, String symbol);
 void news(String announcement);
 }

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 12 of 60

If the class Stockmarket implements IStockmarket, it is legal to write:

IStockmarket market = new Stockmarket();

This creates a new instance of the Stockmarket class in the local VM.

What about creating and using objects in a remote VM?

Creating or Retrieving a ClientContext
Voyager references a remote Voyager instance (process) through a ClientContext. An
application creates a ClientContext using one of several methods implemented in
VoyagerContext. The methods acquireClientContext(Guid) and
acquireClientContext(String)both retrieve or create a ClientContext. The first
variant refers to a remote Voyager server with the indicated Guid. The second variant
refers to a remote Voyager server with the indicated name. If the ClientContext
already exists the existing instance is returned, but if the ClientContext doesn't exist a
new ClientContext instance is created and returned.

The network address of a remote Voyager instance is set using the ClientContext's
openEndpoint(url) method. Note that this method fails with a runtime exception if
called on the ClientContext referencing the local Voyager. Creating the actual
connection to the remote Voyager may be deferred until the connection is actually
needed.

Creating or Retrieving a ServerContext
A ServerContext receives incoming Voyager messages and dispatches them for
processing. A ServerContext also contains a collection of objects exported through
that ServerContext. Voyager will not automatically create a ServerContext. The first
ServerContext created is used as the default ServerContext unless a different one is
explicitly identified using VoyagerContext’s
setDefaultServerContext(ServerContext) method.

Configuring a ServerContext is a two-step sequence: the first step is creating the
ServerContext and the second step is providing the ServerContext the URL on
which to listen for incoming messages. As with the ClientContext, the
VoyagerContext provides several methods for retrieving or creating a ServerContext,
including acquireServerContext(Guid) and acquireServerContext(String). Both
methods return an existing ServerContext if one already exists, or create and return a
new one. The second step calls the ServerContext startServer(String) method to
provide the ServerContext an address on which to listen.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 13 of 60

Creating a Remote Object
A remote object is represented by a special object called a proxy that implements the
same interfaces as its remote counterpart. The proxy exists in the local VM and
implements an interface that is also visible in the local VM. A variable declaration whose
type is an interface may refer to a remote object via a proxy, because both the remote
object and its proxy implement the same interfaces. Consequently, as long as you use
interface-based programming, the code for a remote method invocation through a proxy
is coded exactly like a local method invocation directly to an object.

To create an object at a location referenced by a ClientContext, call getFactory() to
retrieve the ClientContext's Factory instance, then invoke one of Factory's
create() methods. This creates and returns a proxy to the newly created object.

There are several variations of create(), depending on whether the object is to be
created locally and whether the class constructor takes arguments. You must always fully
qualify the name of the class. For example, use examples.stockmarket.Stockmarket
instead of Stockmarket. To create a default instance of Stockmarket in the local
program and another in the program running on port 8000 of the machine dallas, type:

 String className = "examples.stockmarket.Stockmarket";

 VoyagerContext voyagerContext = Voyager.startup();
// create locally ...
Factory aFactory =
voyagerContext.getLocalClientContext().getFactory();
IStockmarket market1 = (IStockmarket) aFactory.create(className);

//create remotely ...
ClientContext cc = voyagerContext.acquireClientContext("Dallas");
cc.openEndpoint("//dallas:8000");
aFactory = cc.getFactory();
IStockmarket market2 = (IStockmarket)aFactory.create(className);

Both market1 and market2 will be proxy objects. The market1 proxy refers to a local
instance of Stockmarket, and the market2 proxy refers to a remote instance. Note that
both market1 and market2 are declared as type IStockmarket. Voyager infers the proxy
type based on the instance of the actual object created, in this case
examples.stockmarket.Stockmarket. Your application code does not reference the
proxy type. (If you are curious, you can call GetType().Name on a proxy and get its type
name.)

To create an instance of Stockmarket and use the constructor that takes a String and an
integer, type:

object[] args = new object[] { "NASDAQ", 42 };
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 14 of 60

IStockmarket market3 =
 (IStockmarket) aFactory.create(className, args);

Sending Messages and Handling Exceptions
A message sent via a proxy is handled according to the following rules.
If the destination object is in a different virtual machine, the arguments and return value
must be sent across the network. If an argument implements
recursionsw.voyager.IRemote or com.recursionsw.ve.IRemote, a proxy to the
argument is sent (pass by reference). If the argument implements
com.recursionsw.ve.VSerializable or java.io.Serializable, a copy of the argument is
sent using serialization (pass by value). Morphology of the arguments is maintained – an
object that is an argument or part of an argument is copied exactly once, and an argument
or part of an argument that shares an object in the local virtual machine also shares a
copy of the object in the remote virtual machine. Rules for an argument also apply to a
return value.
If the destination object is in the same virtual machine, arguments passed by reference
will pass the original object instead of a proxy to the object. Serializable objects will still
be serialized even though they are already in the same VM. This maintains the same
semantics for a method invocation: regardless of whether the calling object and called
object are on the same VM, the called method will get a copy of the serializable object
which it can safely modify. Without this behavior, when the method was invoked locally
it would modify the original object and when the method was invoked remotely it would
modify a copy of the object.

The following figure shows how a remote message is processed.

If a remote method throws an exception, it is caught and re-thrown in the local program.

The Basics1 Example demonstrates basic messaging and remote construction.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 15 of 60

Logging Information to the Console
The recursionsw.voyager.lib.util.Console class allows you to log information,
including stack traces of remote exceptions, to the console or a TextWriter. Use
Console.enableTopic() or Console.addEnabledTopics() to select enabled topics.
Use Console.disableTopic() to turn off a previously selected topic. Pre-defined
constants used by Voyager include:

LogConst.SILENT
Disables logging of messages at the EXCEPTIONS and VERBOSE levels.

LogConst.EXCEPTIONS
Displays stack traces of remote exceptions and unhandled exceptions to the console.

LogConst.VERBOSE
Displays stack traces of remote exceptions, unhandled exceptions, and internal debug
information and stack traces to the console.

Since most CF environments do not provide a shell or console environment, you may
find it useful to redirect Voyager’s console output to a file. To do this, create a stream
and set it as the output stream for the console. For example:
FileStream fs = new FileStream("\\voyagercf_log.txt", FileMode.Create);
recursionsw.voyager.lib.util.Console.LogStream = new StreamWriter(fs);
You can then view this log file on the emulator or copy it to the host environment.

Understanding Distributed Garbage Collection
Voyager's distributed garbage collector (DGC) reclaims objects when they are no longer
pointed to by any local or remote references. Just as with the native VM’s garbage
collector, distributed garbage collection happens automatically and transparently.

Voyager uses an efficient "delta pinging" scheme to reduce DGC network traffic. Each
program notes when references to remote objects are created and destroyed. In each DGC
cycle, which is 2 minutes by default, the program sends each referenced remote program
a single message containing a summary of the references to its objects that were
added/removed since the last DGC cycle. By tracking this information as it changes over
time, each program can tell when no remote references exist to an exported object. At this
time, the DGC mechanism on that VM releases its anchor on the object, permitting the
VM's garbage collection mechanism to reclaim the object. The DGC mechanism will also
release its anchor on an object if the remote VM(s) that have proxy references to the
object cannot be reached for three consecutive cycles. This keeps the Voyager VM from
using an increasing amount of memory as remote VM's are started and shut down over
time.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 16 of 60

Objects that have been bound in Voyager's naming service are anchored permanently.

DGC Notification

If a class is interested in being notified when a remote reference to an instance of the
class is about to be discarded by DGC, it can implement the recursionsw.voyager.
messageprotocol.vrmp.dgc.IDGCListener interface. The callback function
discardingReference() is invoked when a remote reference to the object is about to be
discarded. The object has the option to allow or delay discarding the reference. See the
API documentation for IDGCListener for more details.

DGC Discard Delay Configuration

DGC reference discard delay configuration support, provided via the
DGC.setDiscardDelay method, sets the delay between the time a remote reference is last
used and the time the reference is discarded by DGC. See the API documentation for
recursionsw.voyager.vrmp.dgc.DGC for more details.

Using Naming Services
The Voyager Namespace service provides unified access to a variety of naming services.
This section shows how to use the Namespace class to bind names to objects and look
them up.

The class recursionsw.voyager.Namespace is a façade, which unifies binding and
lookup operations to any naming service implementation. Voyager provides the
following naming service implementations:

• Voyager federated directory service

The Namespace class differentiates between various naming service implementations by
using a unique prefix for each implementation. For example, the Voyager federated
directory service uses the prefix vdir:. Binding and lookup operations use the name's
prefix to determine which underlying naming service implementation to access for the
operation. Once an object has been bound, it can be looked up by any type of client using
any lookup prefix supported by Voyager.

To bind a name to an object, retrieve the Namespace instance from the VoyagerContext
and invoke bind() with the name expressed as an URL. The following code segment
creates a Stockmarket on the host //dallas:8000 and then binds it to the name NASDAQ
for later lookup:

String className = "examples.stockmarket.Stockmarket";
VoyagerContext voyagerContext = Voyager.startup();
ClientContext cc = voyagerContext.acquireClientContext("Dallas");

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 17 of 60

cc.openEndpoint("//dallas:8000");
aFactory = cc.getFactory();
IStockmarket market = (IStockmarket) aFactory.create(className);
cc.getNamespace().bind("/NASDAQ", market);

The construction and binding step may be combined as follows:
IStockmarket market = (IStockmarket)
aFactory.create("examples.stockmarket.Stockmarket",
 "//dallas:8000/NASDAQ");

To obtain a proxy to a named object, invoke the Namespace’s lookup() method. The
following example obtains a proxy to the object that was created and named by the
previous code segment:

IStockmarket market =
(IStockmarket)cc.getNamespace().lookup("/NASDAQ");

The default naming service is the Voyager federated directory service (prefix vdir:). If a
prefix is missing from a name, it is assumed to be vdir:. Voyager provides naming
service implementation which is installed automatically.

Voyager

Service Prefix

Voyager federated directory
service

vdir:

The Naming2 Example illustrates the default naming service.

Working with Proxies
Voyager’s proxy classes provide the network communications capabilities to perform
remote invocations and work with remote references to objects. All Voyager proxy
classes extend recursionsw.voyager.Proxy and implement the interface(s) of their
referent. For Java JSE and .NET environments, Voyager generates required proxy
classes at runtime automatically the first time Voyager requires an instance of that proxy
class (typically, the first time a remote reference is acquired by the VM). Use any of the
following to obtain or create a proxy to an object.

Factory’s create(String classname)

Returns a proxy to a newly created remote object, where classname is the name of the
class that you are creating an instance of.

Namespace’s lookup(String name)

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 18 of 60

Returns a proxy to the object bound to a particular name.

Proxy.of(Object object)

If the specified object is already a proxy, returns the object; otherwise returns a proxy to
the object.

Special Methods

A method call on a proxy is forwarded to its associated object unless it is one of the
special methods:

GetType()

This method is executed directly by the proxy and returns the type of the proxy.

GetHashCode()

Returns the hash code of the proxy itself. Use remoteHashCode() to obtain the hash code
of a proxy's associated object. Two proxies return the same hash code if they refer to the
same object.

Equals()

Returns true if the argument is a proxy that refers to the same object as the receiver. Use
remoteEquals() to compare the proxy's associated object with another object.

Additional methods in Proxy follow.

isLocal()

Returns true if the proxy is in the same VM as its associated object.

getLocal()

If the proxy is in the same VM as its associated object, returns a direct reference to the
object; otherwise returns null.

getClientContext()
Returns the ClientContext of the proxy's associated object.

To pass an object by reference, either explicitly pass a proxy obtained using Proxy.of(),
or implicitly pass a proxy by ensuring that the object class implements
recursionsw.voyager.IRemote, com.recursionsw.ve.IRemote (Voyager will also
pass a proxy reference if the object does not implement java.io.Serializable or
com.recursionsw.ve.VSerializable, or, for CF, is tagged Serializable).

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 19 of 60

Exporting Objects
To receive remote messages, an object must be exported to exactly one local
ServerContext. After it is exported, all remote messages to an object arrive via its export
ServerContext.

If a proxy to an unexported object is passed to a remote program, Voyager automatically
exports the object to the default ServerContext. If Voyager was started on an explicit
URL, the default ServerContext is the one listening on the startup URL, otherwise the
default ServerContext is the first one created or the one selected using
VoyagerContext's setDefaultServerContext(ServerContext) method. Note that Voyager
never automatically creates a ServerContext, and if an implicit export happens before a
SeverContext is created, the export will fail with an exception.

The automatic export mechanism is sufficient for most applications. However, there are
times where it is useful to partition objects among more than one ServerContext. For
example, security reasons might dictate associating one group of objects with a
ServerContext whose URL that is connected to an intranet, while associating another
group of objects with a ServerContext whose URL connects to the Internet via SSL.
Because programs on the Internet can only communicate via the server using SSL
connections, they can only send messages to the group of objects that are exported on that
ServerContext.

To explicitly export an object, use the export() method on the appropriate
ServerContext instance.

Proxy export(Proxy aProxy)
Alternately, call Proxy's static export() method and provide the
appropriate ServerContext as the second argument.

Proxy export(Object object, ServerContext serverContext)
Exports the object on the ServerContext.

unexport(Object object)
The static Proxy method unexport() removes the object from the ServerContext's
collection of exported objects. The ServerContext instance method unexport() does
the same thing.

Note: An exported object can receive messages on exactly one ServerContext.
The Basics2 Example binds a name to an object exported on an explicit port.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 20 of 60

Working with Federated Directory Services
The Voyager federated directory service allows you to register an object in a distributed
hierarchical directory structure. You can associate objects with path names comprised of
simple strings separated by slashes, such as fruit/citrus/lemon or
animal/mammal/cat. The building block of the directory service is a
recursionsw.voyager.directory.Directory, which has the following interface:

put(String key, Object value)
Associates a key with a value. If key is a simple string, associates it with the specified
value in the local directory. If key is a path, looks up the Directory associated with the
head of the path name and then forwards the put() message with the remaining tail of
the path name. Returns the value previously associated with the key or null when there
was none.

get(String key)
Returns the value associated with a particular key. If key is a simple string, return its
associated value in the local directory or null when there is none. If key is a path, looks
up the Directory associated with the head of the path name and then forwards the get()
message with the remaining tail of the path name.

remove(String key)
Removes the directory entry with the specified key. If key is a simple string, removes its
entry from the local directory. If key is a path, looks up the Directory associated with
the head of the path name and then forwards the remove() message with the remaining
tail of the path name. Returns the value that was associated with the key or null when
there was none.

getValues()
Returns an array of the values in the local directory.

getKeys()
Returns an array of the keys in the local directory.

clear()
Removes every entry from the local directory. Removing the entries has no effect on the
directories that the local directory used to reference.

size()
Returns the number of keys in the local Directory.

To create a simple directory of local objects, create a Directory object and send it the
put() message with a string key and a local object.

Directory symbols = new Directory();
symbols.put("CA", "calcium");

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 21 of 60

symbols.put("AU", "gold");
// symbols.get("CA") would return "calcium"

To create a chained directory structure, a Directory that refers to another Directory , send
put() to a Directory object with another directory or a proxy to a remote Directory as the
second parameter.

Directory root = new Directory();
root.put("symbols", symbols); // associate "symbols" with
the symbols directory
// root.get("symbols/CA") would return "calcium"

Because Directory implements IRemote, you can pass a local directory as a parameter
to a remote directory and it is automatically sent as a proxy.

The Naming1 Example sets up a simple federated directory service.

Task and Thread Management
To reduce the significant overhead of creating and destroying threads, Voyager uses a
task manager and thread pool. When Voyager needs to run a task in a different thread,
Voyager schedules the task with its task manager. In the Java JSE and .NET
environments, Voyager uses a custom thread pool. In the .NET CF environment, the task
manager uses threads from the standard System.Threading.ThreadPool thread pool to
run tasks.

Timers
Voyager's timer Services include the Stopwatch and Timer classes. You can use a
Stopwatch object to clock time intervals and print time measurement statistics. You can
use a Timer object to generate timer events and add listeners to timers.

In this chapter, you will learn to:

• Clock time intervals

• Use timers and timer events

Clocking Time Intervals

Use Voyager's Stopwatch class to clock time intervals. You can start and stop a
Stopwatch object an unlimited number of times before resetting it; every start/stop cycle
is called a lap. You can access the cumulative lap time, average lap time, and last lap
time, and you can record individual lap times.

see the following methods defined in Stopwatch to clock time intervals:

• getDate()

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 22 of 60

Returns the current date.

• getMilliseconds()

Returns the current time in milliseconds since January 1, 1970, 00:00:00 GMT.

• reset()

Resets the stopwatch, clears lap times, and sets the lap count to zero.

• start()

Starts a stopwatch.

• stop()

Stops a stopwatch, increments the lap count, and, when enabled, records the lap time.

• lap()

Stops the stopwatch temporarily to record the lap time and immediately restart it.

• setRecordLapTimes(boolean flag)

Enables or disables the recording of lap times.

• isRecordLapTimes()

Returns a boolean indicating whether lap-time recording is enabled.

• getLapCount()

Returns the current completed lap count.

• getLapTime()

Returns the last completed lap time.

• getLapTimes()

Returns a long array of recorded lap times. If lap-time recording is disabled, an empty
array is returned.

• getTotalTime()

Returns the sum of all completed lap times.

• getAverageLapTime()

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 23 of 60

Returns the average lap time.

The Stopwatch1 Example starts and stops a Stopwatch object and prints various time
measurement statistics.

Using Timers and TimerEvents

Voyager's Timer class acts like an alarm clock. You can set a Timer object to send a
TimerEvent to one or more listeners. Upon receiving an event, a listener performs an
action. When the action is complete, the timer can continue by sending a TimerEvent to
its next listener. To set up a timer and listeners, follow these steps:

1. Construct a timer and one or more listeners.

2. Set the timer to generate one-shot or periodic events.

3. Add the listeners to the timer.

Constructing a Timer

When you construct a timer, it is placed in a TimerGroup . Each TimerGroup has its own
thread, and all timers in a TimerGroup share its thread to generate events. Unless
specified otherwise, a timer is placed in the default TimerGroup and its thread priority is
set to normal (ThreadPriority.Normal).

You can make a group of timers use a separate thread by assigning the timers to a
discrete TimerGroup at construction. First, construct a new TimerGroup, optionally
supplying a thread priority as a parameter, and then construct timers with the new
TimerGroup as a parameter:

TimerGroup newgroup = new TimerGroup(
 ThreadPriority.AboveNormal);
Timer timer1 = new Timer(newgroup);
Timer timer2 = new Timer(newgroup);

Setting a Timer

You can set a timer to generate an event at a particular point in time, after a specified
period of time, or periodically with the following methods defined in Timer :

• alarmAt(Date date)

Sets the timer to generate an event at the specified time.

• alarmAfter(long milliseconds)

Sets the timer to generate an event after the specified number of milliseconds.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 24 of 60

• alarmEvery(long period)

Sets the timer to generate an event every time the specified period of time (in
milliseconds) elapses.

Other Timer methods used to work with timer events include:

• clearAlarm()

Cancels the generation of the timer's event.

• getAlarm()

Returns the time that the timer is scheduled to generate its next event.

• getPeriodicity()

Returns the number of milliseconds between the timer's events.

Adding a Listener to a Timer

A timer generates an event only if it has a listener. Add an object to a timer as a listener
using these steps:

1. Ensure that the object's class implements the TimerListener interface.

2. Send addTimerListener() to the timer with an instance of the object as a
parameter.

To remove a listener from a timer, call removeTimerListener(TimerListener
listener) on the timer.

Multiple listeners to a timer use a single thread, the timer's TimerGroup thread, to
perform actions upon receiving events. You can override this default behavior by
wrapping a listener with a TimerListenerThread; that is, you can construct a
TimerListenerThread object with an instance of the listener as a parameter.
TimerListenerThread implements TimerListener .

For example, suppose a listener1 object listens to a timer1 timer. The following code
wraps listener1 with a TimerListenerThread and then adds the wrapped listener to
timer1 .

TimerListener timerListener1 = new TimerListenerThread(
 listener1);
timer1.addTimerListener(timerListener1);

A listener wrapped with a TimerListenerThread is dynamically allocated a new thread
from a thread pool when it receives an event. In this way, the timer can use its

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 25 of 60

TimerGroup thread to continue delivering events to other listeners without waiting for the
wrapped listener to perform its action.

By default, the priority of a new thread allocated by TimerListenerThread is equal to
the priority of the current thread. To override the default, specify the desired priority
when you construct the TimerListenerThread object, for example:

new TimerListenerThread(listener1, ThreadPriority.Highest)
The Timer1 Example demonstrates a ramification of Voyager's default thread behavior,
sharing a TimerGroup thread. Two listeners receive TimerEvent events via the same
thread, so the second listener does not receive a TimerEvent until the first listener
completes its timerExpired()method.

The Timer2 Example demonstrates creating a new TimerGroup. A timer1 listener
receives an event from the default TimerGroup's thread, and a timer2 listener receives
an event from the new TimerGroup's thread.

The Timer3 Example demonstrates allocating listeners separate threads to perform
actions upon receiving TimerEvent events. The second listener receives a TimerEvent
before the first listener's timerExpired() method completes.

Voyager .NET Compact Framework
Basics
This chapter describes the basic operation and usage of Voyager on the .NET Compact
Framework.

In this chapter, you will learn to:

• Start and stop a Voyager program.

• Understand type resolution for the .NET Compact Framework.

• Use the pgen4csharp utility to create proxy classes.

• Create and deploy a Voyager Smart Device application to the Pocket PC
emulator.

• Use the vgen utility to generate Java and C# interfaces for interoperability.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 26 of 60

Starting and Stopping a Voyager Program
A program must invoke one of the following variations of Voyager.startup() before it
can use any Voyager features.

startup()

Starts Voyager as a client that initially does not accept incoming connections from
remote programs. The application is free to start one or more server contexts as needed.

startup(String serverName, String serverUrl)

Starts Voyager with a single server context that accepts incoming connections on the
specified URL.

Both startup methods return VoyagerContext, which is the context used by the
application to reference Voyager.

The general format of a URL (Universal Resource Locator) follows:

protocol://host:port/file;argument#reference

Each part of the URL is optional. For simplicity and readability, the Voyager
documentation and examples typically use only the port (8000) or host:port
(//dallas:7000). However, to minimize hostname resolution problems it is
recommended to use the fully qualified hostname or IP address of the system. In general,
you should use the hostname of the system, especially if its IP address may change. A
complete description of the URL format follows:
protocol The protocol is the transport protocol. If unspecified, the default

protocol (normally tcp) will be used.
host The host is the hostname or IP address of the system. The hostname

may be partially qualified (//dallas) or fully qualified
(//dallas.recursionsw.com) or //localhost. If //localhost is
specified, Voyager attempts to resolve the system's hostname. Because
this may not return the system's fully qualified hostname, it is not
recommended to use "//localhost" for the host.

port The port specifies the port number of the system.
File,
;argument,
#reference

These parts of an URL are rarely used with Voyager, but are presented
for completeness.

When Voyager is started as a server, it will begin listening on the URL specified on the
command line or in the call to Voyager.Startup(name, URL). A Voyager VM can
accept connections on multiple URL's, however. The application simply creates a server
context and tells the server context the URL on which to listen. If the system is multi-

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 27 of 60

homed with multiple hostnames, you can either explicitly specify the hostname or omit it
and allow the operating system to determine the primary hostname.

Examples of starting Voyager programmatically follow:
VoyagerContext voyagerContext = Voyager.startup(); // startup as a
client
VoyagerContext voyagerContext = Voyager.startup("my server", "//:8000"
); // startup as a server on port 8000
VoyagerContext voyagerContext = Voyager.startup("my server",
"//dallas:7000"); // startup as server on port dallas:7000
VoyagerContext voyagerContext = Voyager.startup("my server",
"//10.2.2.20:7000"); // startup as server on port 10.2.2.20:7000
To shut down Voyager, invoke voyagerContext.shutdown(). This method terminates
the Voyager internal non-daemon threads. Daemon threads continue to run, but the
application can be terminated safely at this point.

You can use voyagerContext.addSystemListener() to listen to the events generated
by the startup and shutdown.

Type Resolution in .NET CF
Understanding Assembly Loading

For .NET development classes are built into Assemblies, either a .DLL or .EXE file,
which are then loaded making the classes available to the .NET runtime. Here are some
important steps in loading an assembly, Basic2A.exe, which was built with a reference
to the Stockmarket.dll assembly.

1. If a .config file with the same name as the executable, e.g.
Basics2A.exe.config, is available in the same directory then it will be used for
locating referenced assemblies

2. Any assemblies that are not signed must be in the same directory as
Basics2A.exe but signed assemblies may be configured in
Basics2A.exe.config with a location external to the executable’s directory.

Note: The prebuilt assemblies for Voyager are signed. Example code that builds into
assemblies, e.g. Stockmarket.dll, are not signed.

3. The operating system evaluates all static references beginning with Basic2A.exe,
including Stockmarket.dll, and eventually reaching mscorlib, which is the
.NET runtime library.

4. Each of the assemblies may reference mscorlib, which is the .NET runtime
library and some assemblies may have been built with reference to .NET 1.1
Framework while others were built with reference to .NET 2.0.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 28 of 60

5. An installed .NET runtime CLR is launched which is capable of handling the
highest version of mscorlib reference by any assembly. If all static references to
mscorlib are for .NET 1.1 then the the .NET 1.1 CLR may be launched by the
operating system even if the .NET 2.0 CLR is also installed on the machine.

6. Dynamically loading assemblies into a running CLR that are built for a later
version of .NET will cause an error.

Note: Voyager assemblies reference the .NET Framework 2.0, which should always
result in a 2.0 CLR (or later) being launched. Since dynamic class loading is used by
Voyager it is important to note that assemblies loaded dynamically do not influence the
CLR selected to run Voyager.

Creating Proxy Classes
Voyager uses proxy classes to support invocation of methods on remote objects. A proxy
class contains special code to serialize any arguments passed to the method, and sends the
serialized arguments and other data to the server using a messaging protocol that
specifies an “on-the-wire” format for sending and receiving message invocations and
responses. Each proxy class implements one or more application interfaces, allowing the
application code to remain ignorant of the proxy class.

The Java and .NET environments support dynamic creation and loading of classes.
Voyager takes advantage of this capability by automatically generating proxy classes in
these environments. Since the .NET Compact Framework does not support runtime class
creation, Voyager provides the pgen4csharp utility to create C# source code for proxy
classes. The pgen4csharp utility is in the bin\ directory of your Voyager installation.

To generate a proxy class from the examples.stockmarket.Stockmarket class, type
the following from a command window:
% pgen4csharp -la stockmarket.dll examples.stockmarket.Stockmarket
(Note: this assumes pgen4csharp.exe is in your path.) This generates a file called
Stockmarket_IProxy__Proxy.cs in the current directory. You will need to include this
file in your project. (Right-click the project in Visual Studio, select “Add”, then “Existing
Item”.)

For a complete list of pgenc4csharp options, see pgen4csharp.

Creating and Deploying a Voyager Smart Device
Application
To create a Smart Device application in Visual Studio 2008, follow these steps:

1. Select File|New Project.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 29 of 60

2. Under Project types, Visual C#, select Smart Device. Enter your project name and
select OK.

3. For Target platform, select Windows Mobile 5.0 Pocket PC SDK. The .NET
Compact Framework version can be either 2.0 or 3.5. Select the appropriate
Template (typically either Device Application or Console Application) and select
OK.

4. Right-click References and select Add Reference. Navigate to
$VOYAGER_HOME/cf/dll and add both Hessianmobileclient.dll and
Voyager.CF.dll.

Using Vgen to Generate Interfaces
If you are creating a distributed application using both Java and .NET, you will need
common interfaces between the two environments. One way of accomplishing this is to
write the interface in one language and then manually port it. A better way is to define the
interface in a language-neutral way and then let a tool create both the Java and .NET (C#)
interfaces.

The vgen utility generates Java and C# interfaces from an interface definition file. The
interface definition file, or IDL, uses the CORBA IDL syntax. You can download the
formal IDL definition at http://www.omg.org/cgi-bin/doc?formal/02-06-39.

Here is a sample IDL file for the examples.stockmarket.IStockmarket interface:

module examples {
 module stockmarket {
 public interface IStockmarket {
 int quote(string symbol);
 int buy(int shares, string symbol);
 int sell(int shares, string symbol);
 void news(string announcement);
 };
 };
};

To generate Java and C# interfaces for this IDL, use the vgen command:
% vgen istockmarket.idl
Your server application will implement the appropriate Java or C# interface. The client
application will implement a “do-nothing” version of the interface, and if necessary
generate a proxy using pgen or pgen4csharp.

Advanced Features
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 30 of 60

http://www.omg.org/cgi-bin/doc?formal/02-06-39

Advanced Messaging
You can send synchronous messages in Voyager using regular Java and .NET syntax.
However, many applications need greater flexibility, so Voyager provides a message
abstraction layer that supports more sophisticated messaging features.

In this chapter, you will learn to:

• Invoke messages dynamically

• Retrieve remote results by reference

• Use multicast and publish/subscribe

Invoking Messages Dynamically
You can dynamically invoke messages either synchronously or asynchronously.

Synchronous Messages
By default, Voyager messages are synchronous. When a caller sends a synchronous
message, the caller blocks (waits) until the message completes and the return value, if
any, is received. For example, the following line of code sends a synchronous buy()
message to an instance of IStockmarket.

int price = market.buy(42, "SUN");

You can send a synchronous message dynamically using Sync’s invoke() method,
which returns a Result object when the message has completed. You can then query the
Result object to get the return value/exception. To send a synchronous message, retrieve
the synchronous invoker from the appropriate ClientContext (), then call invoke(). The
simplest version requires passing the following parameters.

• Target object

• Name of the method you want to call on the target object

• Parameters to the dynamically invoked method in an object array

For example, the following line of code uses Sync to dynamically invoke a buy()
message on an instance of Stockmarket.

ClientContext cc =
voyagerContext.acquireClientContext(“Server8000”);
Result result = cc.getSyncInvoker().invoke(market, "buy", new
Object[] { 42, "SUN" });
int price = result.readInt();

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 31 of 60

In most cases, the simple name of the method suffices. However, if there is more than
one method with the same name in the target object, the method name must be specified
with argument types using the syntax method(type1, type2). Spaces in the signature
are ignored, and the return type must not be specified. A version of the previous example
that uses the longer version of the signature follows:

ClientContext cc =
voyagerContext.acquireClientContext(“Server8000”);

 Result result = cc.getSyncInvoker().invoke(market,
 "buy(int,System.String)", new Object[] { 42, "SUN" });

 int price = result.readInt();

You can query a Result object using the following methods. In the case of synchronous
methods, the reply value is always available by the time these methods are called. Future
messages allow the methods to be called before the reply value is received.

• isAvailable()

Returns true if the Result received its return value.

• readXXX(), where XXX = Boolean , Byte, Char, Short, Int, Long,
Float, Double, Object

Returns the value of Result, blocking until either the value is received or the timeout
period of Result elapses. If the value is not received within the timeout period, a
recursionsw.voyager.message.TimeoutException is thrown. See the Future
Messages section for information about timeouts. The timeout countdown starts when the
readXXX() method is called, not when the message is actually sent. If a remote exception
occurs during a future message invocation and you attempt to call readXXX() on Result,
the exception is automatically rethrown. See Sending Messages and Handling Exceptions
for information about exceptions.

• isException()

Waits for a reply and then returns true if Result contains an exception.

• getException()

Waits for a reply and then returns the exception contained in Result or null when no
exception occurred.

The Message1 Example demonstrates invoking a synchronous instance method using
Voyager's dynamic invocation feature.

One-Way Messages

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 32 of 60

A one-way message does not return a result. When a caller sends a one-way message, the
caller does not block while the message completes, so sending a one-way message is fast,
from the perspective of the caller. Voyager uses a separate thread to deliver the message.
You can send a one-way message dynamically using
recursionsw.voyager.message.OneWay, which performs "fire-and-forget" messaging.

To send a one-way message dynamically, call the OneWay invoke() method, passing the
following parameters.

• Target object

• Name of the method you want to call on the target object

• Parameters to the dynamically invoked method in an object array

For example, the following line of code uses OneWay to dynamically invoke a one-way
buy() message on an instance of Stockmarket.

ClientContext cc =
Voyager.getDefaultVoyagerContext().acquireClientContext(“Serve
r8000”);
Result result = cc.getOneWayInvoker().invoke(market, "buy",
newObject[] { 42, "SUN" });

The Message2 Example demonstrates sending a one-way message.

Future Messages

A future message immediately returns a Result object, which is a placeholder to the
return value. When a caller sends a future message, the caller does not block while the
message completes. You can use Result to retrieve the return value at any time by
polling, blocking, or waiting for a callback.

To send a future message, call Future’s invoke() method, passing the following
parameters:

• Target object

• Name of the method you want to call on the target object

• Parameters to the dynamically invoked method in an object array

For example, the following code uses Future to dynamically invoke a quote() message
on a Stockmarket object and then reads the return value at a later time.
 ClientContext cc =

voyagerContext.acquireClientContext(“Server8000”);
 Result result = cc.getFutureInvoker().invoke(market, "quote",

new Object[] { "SUN" });
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 33 of 60

 // perform other operations here
 result.readInt(); // block for price, if necessary

The Message3 Example demonstrates sending a future message and reading the return
value with a blocking call. This example also demonstrates blocking reads when the
placeholder result of the future invocation is a thrown exception.

You can be notified when a future return value arrives through an event listener
mechanism. When a return value arrives, Result sends resultReceived() with a
recursionsw.voyager.message.ResultEvent object to every
recursionsw.voyager.message.ResultListener that either was specified in the full
version of Future’s invoke() or was added to the Result object after the message was
sent.

The Message4 Example demonstrates receiving an event notification of the arrival of the
return value to a future invocation.

More than one thread can invoke readObject() on a Result. When Result receives the
return value, all blocked threads are awakened and receive that value.

The Message5 Example demonstrates Voyager's ability for multiple threads to block
while waiting for the return value to a single future invocation.

By default, Voyager messages are synchronous and never time out. However, you can set
a timeout for a future message by using the full version of Future invoke(). For
example, the following line of code creates a Result with a timeout period of 10,000
milliseconds.

Result result = cc.getFutureInvoker().invoke(market,
"quote", new
 Object[] { "SUN" }, false, 10000, null);

The timeout period does not begin until Result is read.

Voyager also allows you to change the timeout value for a Result generated by a future
message. Use the following Result methods to work with timeouts:

• setTimeout(long timeout)

Changes the timeout value for a Result. When Result is read, the timeout period begins.
Reads that take longer to complete than the specified timeout period cause a
TimeoutException to be thrown.

• getTimeout()

Returns the current timeout value for a Result. The default value, zero, indicates the
Result never times out.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 34 of 60

The Message6 Example demonstrates Voyager's support of method invocations that time
out.

Retrieving Remote Results by Reference

By default, Future’s invoke() and Sync’s invoke() return a copy of a remote
method result. If a result object is large, undesirable network traffic can occur. With
Voyager, you can tell Future or Sync to return a proxy to a result instead, thereby
reducing network traffic. If the result is not serializable, returning a proxy eliminates the
need for serialization and allows the method to be invoked successfully. As expected, a
proxy to a result keeps the remote result alive. To request that Future or Sync return a
proxy to a result, use the full version of invoke() and set the returnProxy parameter to
true.

The Message7 Example demonstrates Voyager's support for remote method invocations
that return results by reference.

Dynamic Discovery
Finding or discovering other systems of interest remains a central issue for distributed
systems. Voyager defines a collection of interfaces and abstract classes that define a
generic application-programming interface for finding other Voyagers. The next section
describes the generic API. The following section describes an implementation that uses
UDP multicast packets to advertise and listen for other Voyagers without prior
knowledge of their identity or address.

Generic Application Programming Interface
The discovery is composed of the following interfaces.

• IDiscoveryManager, the methods implemented on the container for all
available discovery implementations. The implementation instance is
available from the default Voyager context by calling the
getDiscoveryManager() method.

• IDiscoveryService, the methods for managing an implementation of a
dynamic discovery service, including retrieving the name of the service,
starting and stopping discovery announcement sending and receiving,
managing listeners for dynamic discovery events.

• IAnnouncement, the methods implemented by a Voyager’s announcement.
• IServerDescription, the methods describing a Voyager’s identity and

available ServerContexts.
• IAnnouncementMarshaller, the methods implemented by the class that builds

IAnnouncement instances from the Voyager ServerContexts.
• IDiscoveryAnnouncementListener, the methods implemented by a listener

registered with IDiscoveryService, and which is notified of each
IAnnouncement received.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 35 of 60

• IDiscovered, the methods implemented by an implementation class that
maintains a collection of recent announcements. The implementation of this
interface relieves the application of the need to manage a collection of
available Voyager systems. The default instance is available by calling
IDiscoveryManager’s getDiscovered() method.

• IDiscoveredListener, the methods that must be implemented by a listener
registered with IDiscovered. A method in this interface is called when the
IDiscovered implementation adds a new Voyager, and a different method is
called when an existing Voyager’s announcement is removed.

Using the Generic API

Voyager creates the IDiscoveryManager implementation during startup. An
application intending to use a discovery service should first check the result
returned by IDiscoveryManager’s getDiscoveryServices() or
getDiscoveryService(String) to see if the desired implementation is already
available. If not, the application should construct the implementation and call
IDiscoveryManager’s registerDiscoveryService(IDiscoveryService) to tell
IDiscoveryManager about it.
Once the IDiscoveryService implementation is available, the application can
interact with dynamic discovery in any of the following ways.

• The application can create a listener for discovery announcements and
register the listener with the discovery service by calling
IDiscoveryService’s
registerAnnouncementListener(IDiscoveryAnnouncementListener)
method. This results in a notification each and every time a discovery
announcement is received. This approach requires the application to
manage knowledge of discovered Voyagers, since IDiscoveryService
implementations maintain no history or discovery state.

• The application can create a listener for discovered Voyager adds and deletes
and register it with registerListener(IDiscoveredListener), found in
IDiscovered. This approach relies on the IDiscovered implementation to
maintain a collection of discovered Voyagers, and to purge announcements
that exceed a specified age.

• The application can call IDiscovered’s ListOfDiscoveredVoyagers() when
it needs to look for another Voyager. Again, this approach relies on the
IDiscovered implementation to maintain a collection of discovered
Voyagers.

• The application can manage announcing its Voyager’s ServerContexts by
calling IDiscoveryService’s startAnnouncementSenders() and
stopAnnouncementSenders() methods.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 36 of 60

Registering or unregistering a discovery service with the IDiscoveryManager
implementation also does the same operation on the default implementation of
IDiscovered. This results in the IDiscovered implementation maintaining the
announcement state of all known discovery services. Running an
IDiscoveryService implementation without registering it IDiscoveryManager
works, but is not recommended.
Methods in the dynamic discovery subsystem throw a DiscoveryException
exception when they encounter a fault directly related to dynamic discovery.

Implementing Dynamic Discovery
Classes found in the namespace of recursionsw.voyager.discovery.impl provide a
starting point for new realizations of the dynamic discovery application programming
interfaces. The API documentation for the following classes describes usage details.

• AbstractDiscoveryService is an abstract base class implementing the
IDiscoveryService interface. This class knows nothing of the
mechanism used by the discovery implementation, other than
providing the mechanisms for periodically sending an announcement
and managing listeners.

• AbstractDiscoveryServiceSenderReceiver is an abstract base class that
extends AbstractDiscoveryService. This class assumes the discovery
implementation requires separate activities to send and receive announcements.
The implementation manages collections of sender and receiver configurations

• Announcement implements IAnnouncement and is the concrete class
delivered to the IDiscoveryService listeners.

• ServerDescription implements IServerDescription and is the
concrete class used by Announcement to describe a single Voyager
server, i.e., a ServerContext.

While a new dynamic discovery implementation could start from the
interfaces, most will extend some or all of the classes described above.

Using UDP Dynamic Discovery Implementation
This dynamic discovery implementation sends and receives announcements using
multicast UDP packets. The primary class, and the only class an application must
explicitly construct, is UDPDiscoveryService, found in the namespace
recursionsw.voyager.discovery.impl.udp. The default no-argument constructor
builds an instance using the defaults defined in the class as public. The
UDPAnnouncementMarshaller class, an implementation of IAnnouncementMarshaller,
builds the content of each announced server.
The serializable class UDPAnnouncement extends Announcement, and is the class
serialized to create an announcement that can be transmitted using a UDP packet. Due to
limits imposed by UDP, a serialized UDP announcement, including all packet overhead,
cannot exceed 65,535 bytes.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 37 of 60

The UDPDiscovery1 and UDPDiscovery2 examples, found in the
examples.discovery package, illustrate how to set up and use UDP
dynamic discovery.
The UDPDiscoveryService class offers a public static method named
startDefaultUDPDiscoveryService() that is suitable for invocation from a Voyager
configuration file, or during an application’s startup initialization. This parameter-less
method constructs an UDPDiscoveryService, registers it with the IDiscoveryManager,
and instructs the service to start sending and receiving UDP-based discovery
announcements.
Adding the following line to a Voyager property file will result in UDP discovery starting
when Voyager starts, using the same default configuration calling
startDefaultUDPDiscoveryService() starts.

Voyager.discovery.impl.udp.UDPDiscoveryServiceInstaller.install=true

Using Multicast and Publish/Subscribe
Distributed systems often require capabilities for communicating with groups of objects.
For example:

• Stock quote systems use a distributed event feature to send stock price events to
customers around the world.

• Voting systems use a distributed messaging feature (multicast) to poll voters
around the world for their views on a particular matter.

• News services use a distributed publish/subscribe feature to send news events
only to readers who are interested in the broadcast topic.

Voyager uses a high-performance, highly scalable architecture for message/event
propagation called Space.

Understanding the Space Architecture

A Space is a logical container that can span multiple virtual machines across the network.
A Subspace is the basic element of a distributed Space. A Space is created by linking
one or more Subspaces together, and the content of a Space is the union of the content
of its linked Subspaces.

A message/event is sent into a Space by publishing it to any Subspace in that Space.
That Subspace clones the message to all neighboring Subspaces and then delivers it to
every object (subscriber) in the local Subspace, resulting in a rapid, parallel fan-out of
the message to every member of the Space. As the message propagates, it leaves behind a
marker unique to that message which prevents the message from being re-propagated if it
re-enters a Subspace it has already visited, that is, a message is delivered exactly once.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 38 of 60

This mechanism allows you to connect Subspaces to form arbitrary topologies without
the possibility of multiple message delivery.

Understanding the Space Implementation

Three interfaces describe behaviors of Spaces. Methods found in ISubspaceMessaging
support messaging and Subspace contents. The ISubspace interface extends
ISubspaceMessaging and contains methods supporting maintenance of Subspace
listeners. Finally, ITcpSubspaceConnections, which extends ISubspace, contains
methods for managing the topology of Subspaces. The class TcpSubspace implements
ITcpSubspaceConnections and communicates using the TCP transport TcpTransport.

Using TCP Spaces

Space Topologies

The topology of a Space depends on the needs of the application and the environment in
which it will run. Major factors that influence this include:

• Where messages or events are generated.

• Network reliability and bandwidth.

• The impact to the application of a Subspace becoming unavailable.

• The rate at which events or messages are generated.

• The size of the events or messages published.

In most applications, a star or double-star topology is the most effective topology,
providing effective message propagation while minimizing excessive use of network
bandwidth. In this configuration, a server's TcpSubspace is connected to each client's
TcpSubspace, but client TcpSubspace are not interconnected. If there are multiple
servers, their TcpSubspaces are connected. Events or messages are typically created on
the server and are efficiently propagated to each client.

In a peer-to-peer application, a more effective topology is for each peer's Subspace to be
connected to a small number of other peers. In this topology, messages can be created by
any peer. Efficient and reliable propagation of messages through the Space is ensured
through multiple connections.

The following diagram illustrates sending a message to a TcpSubspace in a Space.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 39 of 60

Creating and Populating a Space

To create a logical Space and populate it with objects, follow these steps:

1. Construct one or more TcpSubspace objects. Each TcpSubspace can reside
anywhere in the network, allowing a single Space to span multiple programs.

ITcpSubspaceConnections subspace = new TcpSubspace();
ITcpSubspaceConnections subspace = new TcpSubspace();

2. Use the connect method to connect the TcpSubspaces in a logical Space.
Connection is bi-directional; that is, if you connect subspace1 to subspace2, you
need not connect subspace2 to subspace1. (If you do, the second connection
attempt will be ignored.)

subspace1.connect(subspace2);

3. Use the subspace1.add(object) method to add one or more objects to each
Subspace.

4. You can add different types of objects, including proxies and other
TcpSubspaces, into a Space.

Note: Creation and connection of TcpSubspaces can be done in any sequence.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 40 of 60

You can manipulate Subspaces using additional methods defined in
ITcpSubspaceConnections, including:

1. disconnect(ITcpSubspaceConnections subspace)

Disconnects two TcpSubspace's. Like the connect() method, disconnect() is
symmetric.

2. getNeighbors()

Returns an array of proxies to all neighboring TcpSubspaces.

3. isNeighbor(ISubspace subspace)

Returns true when the specified ISubspace is a neighboring ISubspace.

Refer to the API documentation for the
recursionsw.voyager.space.ISubspaceMessaging,
recursionsw.voyager.space.ISubspace, and
recursionsw.voyager.space.ITcpSubspaceConnections interfaces for the complete
list of features available.

Nested Spaces

You can nest Spaces by adding a (possibly remote) ISubspace as an element of another
Subspace, instead of connecting them. Operations on the containing Space, such as
multicasting and publish/subscribe, are propagated automatically to the contained
Spaces, allowing you to group smaller Spaces into a single logical Space. Multicasts
and publications originating in the contained Space are not propagated to the containing
Space, i.e., the connection is one-way only. This one-way connection provides an
additional level of flexibility when designing Space topologies.

The Space1 Example demonstrates creating and populating a distributed Space.

Subspace Event Listeners

A Subspace generates a SubspaceEvent when neighbors are connected or disconnected
and when objects are added to or removed from the Subspace. You can listen for these
events with a SubspaceListener. The SubspaceListener interface declares one
method that your listener must implement:

1. void subspaceEvent(SubspaceEvent event);

Subspace events, defined as constants in the interface ISubspaceMessaging, are:

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 41 of 60

2. ADDING: An object was added to the Subspace.

3. REMOVING: An object was removed from the Subspace.

4. CONNECTING: The Subspace is being connected to another Subspace.

5. CONNECTED: The Subspace was successfully connected to another Subspace.

6. DISCONNECTING: The Subspace is being disconnected from another Subspace.

7. DISCONNECTED: The Subspace was successfully disconnected from another
Subspace.

There are two events generated for each connection or disconnection. Because connects
and disconnects are symmetric, both ISubspaces must successfully perform the action
before it is considered complete. The CONNECTING/DISCONNECTING events are generated
at the beginning of the action, and the CONNECTED/DISCONNECTED events are generated
only if the action successfully completes.

Multicasting

You can multicast a message to a group of objects in a Space using a multicast proxy
provided by a method found in ISubspaceMessaging.

• getMulticastProxy(String classname)

Returns a multicast proxy that is type-compatible with the specified class or
interface. Messages sent to this proxy are multicast to every object in the Space
that is an instance of the specified class or interface. Multicast messages return
false , \0, 0 or null depending on the return type. You can create any number of
multicast proxies with different types to the same logical Space, even to the same
Subspace within a Space.

Multicast messages are always automatically propagated to nested Subspaces.

The Space2 Example demonstrates typesafe multicasting of messages and events to
objects in a Space.

Publishing and Subscribing Events

To publish an event associated with a topic to every object that implements
PublishedEventListener in a Space, use
recursionsw.voyager.space.publish.Publish.invoke(ISubspace subspace,
EventObject event, Topic topic). PublishedEventListener defines a single
method publishedEvent(EventObject event, Topic topic) that receives every
published event in the Space. The listener must handle the event in the appropriate
manner.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 42 of 60

A topic is specified hierarchically with fields separated by periods, like sports.bulls
and books.fiction.mystery. The asterisk (*) wild card matches the next field, and the
left angle bracket (<) matches all remaining fields. For example, games.soccer.goals
matches games.soccer.*, games.*.goals and games.<. Both publishers and
subscribers can use wildcards to match against a range of topics.

An object can subscribe to events in three ways.

1. An object can implement PublishedEventListener and add itself to a Space. It
then receives every event that is published to the Space and must perform
additional filtering and processing as necessary.

2. An object can use an instance of Subscriber to listen to the Space on its behalf
and perform event filtering/forwarding. A Subscriber implements
PublishedEventListener and has methods for subscribing/unsubscribing to
topics. It also contains a reference to another PublishedEventListener. When a
Subscriber is added to a Space, it forwards any published event that matches a
topic to its associated PublishedEventListener. The
PublishedEventListener does not have to be in the same VM as the
Subscriber. For example, to perform server-side filtering, set the Subscriber's
PublishedEventListener to a local intermediary object that performs additional
processing and then forwards the event, if appropriate, to its final remote
destination.

3. An object can use dynamic aggregation, add a Subscriber facet, and then add the
facet to the Space. The Subscriber facet forwards all selected events to the
primary object, which must implement PublishedEventListener.

Published events are always automatically propagated to nested Subspaces.
Note: Subscriber objects must be manually removed from a subspace when the client
disconnects, otherwise they will be orphaned on the server and never garbage collected
unless the server Subspace is garbage collected.
The Space3 Example demonstrates publishing events to subscribers in a Space.

Administering a Space

By default, an ISubspaceMessaging instance does nothing when its objects and
neighbors are disconnected or killed. You can instruct an ISubspaceMessaging instance
to purge itself of disconnected or dead objects and neighbors by using the following
ISubspaceMessaging methods.

• setPurgePolicy(byte policy)

Sets a Subspace's purge policy. Four policies are available.
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 43 of 60

1. ISubspaceMessaging.DIED removes proxies to objects and neighboring
Subspaces that have been garbage-collected. A Subspace knows an object is
dead when an ObjectNotFoundException is thrown as a result of sending a
message to the object.

2. ISubspaceMessaging.DISCONNECTED removes proxies to objects and
neighboring Subspaces that are not reachable. A Subspace knows an object is
disconnected when an IOException is thrown as a result of sending a message to
the object.

3. ISubspaceMessaging.ALL removes proxies to dead and disconnected objects and
neighbors.

4. ISubspaceMessaging.NONE, the default policy, ignores dead and disconnected
proxies.

• getPurgePolicy()

Returns the purge policy assigned to a Subspace.

• purge(byte policy)

Forces a Subspace to be purged immediately using the specified purge policy.

A Subspace automatically purges itself according to its purge policy each time a message
is delivered.

A TcpSubspace propagates events to remote TcpSubspace in a separate thread. This
propagation mechanism is designed for a high degree of scalability and fault tolerance.
There are several parameters that can be used to fine-tune the propagation mechanism.
These parameters can be supplied as standard properties and read on startup, or set
through methods in the recursionsw.voyager.space.PropertyHelper class. Note that
changed parameters only apply to newly created TcpSubspaces.

• subspaceConnectorMaxQueueSize = 0+ events (default: 0)
Each TcpSubspace has a queue to hold events for delivery to a neighboring
TcpSubspace. This parameter configures the maximum size of the queue. Setting this to
a non-zero value N will force events to be discarded in the event that the queue reaches a
size of N. This prevents the queue from unbounded growth in the case of overwhelming
event publication, at the cost of losing events. If you require a more advanced queue
management strategy, use the getQueueSize()method found in ISubspaceMessaging.

• subspaceConnectorLogging = {true|false} (default: false)

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 44 of 60

This parameter controls whether informational/debug messages are logged to the
Voyager console. Enable this to obtain detailed information about the behavior of the
queue.

• rescheduleSubspaceConnector = {true|false} (default: true)
The delivery of the queue associated with a connected TcpSubspace requires a separate
thread that is allocated from Voyager's thread pool. This parameter determines what
happens when the queue is empty (all events have been delivered). If false, the thread
will block indefinitely until at least one new event is added to the queue. If true, the
thread will block for a configurable amount of time for new event(s) to be added to the
queue. If the specified time elapses with no new events to deliver, the thread will be
returned to Voyager's thread pool. The advantage of rescheduling is that the VM will
typically require fewer threads to operate. This can be important if a TcpSubspace has a
large number of neighbors, because propagation to each neighbor requires a separate
thread. The advantage of not rescheduling is that events added to the queue will be
delivered immediately, instead of waiting for a thread to be acquired from the thread
pool.

• subspaceConnectorDeliveryThreadWaitTime = 0+ ms (default: 1000)
This parameter is only operative if rescheduleSubspaceConnector is enabled (true). It
determines how long the queue delivery thread will wait for new events before returning
to the Voyager thread pool. When setting this value, consider the rate of event
publication: if there are short delays between event publication, and this property is set to
a low value, it is likely that threads will return to the thread pool only to be immediately
called on to deliver new events. Conversely, if there are long delays between event
publications, and this property is set to a high value, threads will likely be idle for a long
period of time instead of being returned to the thread pool. It is recommended that this
property be set to between 500ms and 10000ms.

• enableSubspaceConnectorMonitor = {true|false} (default: false)
If this parameter is set, a thread delivering events to a neighboring TcpSubspace is
monitored for network/connection problems. If there are problems with the delivery
(excessive delays or exceptions), the queue is first disabled. In this state it will no longer
accept new events for delivery. If there are further problems, the connection between the
TcpSubspace is broken. If the delivery thread recovers, the queue is re-enabled and will
begin accepting new events. The monitoring is performed by a thread that is notified on a
periodic interval.

• subspaceConnectorMonitorTimerDelay = 0+ ms (default: 1000)

• subspaceConnectorDisableDelay = 0+ ms (default: 10000)

• subspaceConnectorDeactivateDelay = 0+ ms (default: 10000)
These three parameters determine the behavior of the thread monitoring the event
propagation threads. First, the subspaceConnectorMonitorTimerDelay property

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 45 of 60

determines the time interval at which the delivery threads are checked for a "hang-during-
delivery" condition. The other two properties set the timeout delays for disabling and
deactivating the event queue. If the delivery thread is in the "delivering" state for more
time than specified in subspaceConnectorDisableDelay, it will be disabled. The queue
will no longer accept new events. If the subspaceConnectorDeactivateDelay time
then expires, the queue will be deactivated: the connection between the two Subspaces is
broken. However, if the delivery thread successfully recovers before the deactivation
timeout, the event queue is re-enabled.

Yellow Pages Directory
When using the Naming Service, a well-known name is used to acquire a reference to a
service. A client performing a Naming Service lookup is asking for the single service
associated with a unique well-known name.

Voyager’s Yellow Pages Directory provides another mechanism for acquiring a
reference to a service. The Yellow Pages Directory provides a mapping between a
service description, consisting of one or more name-value service attributes, and a
service. A Yellow Pages lookup is performed using a discovery request containing an
expression to match against service descriptions. The Yellow Pages Directory returns all
service descriptions that match the expression in the discovery request. A client
performing a Yellow Pages lookup is asking for all the services that match a filter: the
discovery request expression.

The building block of Voyager’s Yellow Pages Directory is the
recursionsw.voyager.yp.YellowPages class, which implements the interface
recursionsw.voyager.yp.IYellowPages and provides the central API for most Yellow
Pages features. Instances of the YellowPages class host a VM-local registry for services.
A Yellow Pages Directory can be a single Yellow Pages instance or a distributed
federation of inter-connected Yellow Pages instances.

The methods in the IYellowPages interface are described below:

• connect(IYellowPages yellowPages)

The connect() method connects two Yellow Pages instances. Each instance has a service
registry that provides local storage for service descriptions. Connections are bi-
directional: when yp1.connect(yp2) is called, yp1 is connected to yp2 and yp2 is
connected to yp1. Service descriptions are registered only in a single instance: they are
not propagated to connected instance. Only discovery requests are propagated to the
federation of instances.

• disconnect(IYellowPages yellowPages)

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 46 of 60

• disconnect()

The disconnect() methods disconnect a Yellow Pages instance from another Yellow
Pages instance or from all instances it is connected to.

• registerService(ServiceDescription serviceDescription)

• deregisterService(ServiceDescription serviceDescription)

These methods register or deregister a service. The ServiceDescription provided
includes a set of name-value service attributes and an IServiceResolver used by a
client to obtain a reference to the service.

• ServiceDescription[] lookup(DiscoveryRequest discoveryRequest)

• void lookup(DiscoveryRequest discoveryRequest, IDiscoveryListener
discoveryListener)

Perform a lookup. A lookup begins when a lookup() method is called with a discovery
request. A discovery request contains a discovery request expression. Each term in the
expression is a conditional test of an attribute in the service description, such as “equals”
or “exists”. The discovery request is propagated to the federation of Yellow Pages
instances. Each instance applies the discovery request’s expression to the service
descriptions registered, and returns any matches to the client. The two lookup()
methods provide, respectively, synchronous and asynchronous lookups. The
synchronous lookup() method returns matches as an array of ServiceDescriptions;
the asynchronous lookup() method returns ServiceDescriptions to the
IDiscoveryListener in a separate thread. (Note that all lookups are internally
performed asynchronously; the first lookup() method internally simulates a synchronous
lookup.)

Creating a Yellow Pages Directory

To create a Yellow Pages Directory, create or acquire one or more Yellow Pages
instances and connect them using the connect() method:
String classname = YellowPages.GetType().FullName;
Factory f8000 = voyagerContext.acquireClientContext("Server8000").
getFactory();
Factory f9000 = voyagerContext.acquireClientContext("Server9000").
getFactory();
IYellowPages yp1 = (IYellowPages) f8000.create(classname);
IYellowPages yp2 = (IYellowPages) f9000.create(classname);
yp1.connect(yp2);
It is common to use one Yellow Pages instance per VM. The YellowPages class provides
several static methods to simplify acquiring and connecting instances in separate VMs
based on the Singleton design pattern:

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 47 of 60

• static IYellowPages getInstance()

Acquire the default (singleton) Yellow Pages instance for this VM.

• static IYellowPages getInstance(ClientContext cc)

Acquire the default (singleton) Yellow Pages instance for the VM at the given
ClientContext. This will call the static getInstance() method for the YellowPages
class in that VM.

• static void connect(ClientContext cc)

Connect the default (singleton) Yellow Pages instance for this VM to the instance for the
VM at the given ClientContext.

The getInstance() methods delegate to an implementation of IYellowPagesFactory
to provide the actual IYellowPages instance. Use the static get/set methods provided in
the YellowPages class to get or set this factory.

Registering a Service

Services are registered in a Yellow Pages Directory using a service description,
implemented in the class recursionsw.voyager.yp.registry.ServiceDescription.
The service description contains a list of service attributes (name-value pairs) and a
service resolver. The service resolver is used by the client performing a lookup to obtain
a reference to the service. The standard service resolver creates a proxy for the service
and returns this proxy to the client.

ServiceDescription provides several constructors:

• ServiceDescription()

The default constructor, generally not used.

• ServiceDescription(String name, Object service)

Create a service description. The name parameter will be the name of the service. The
service parameter is the service itself. The default service resolver will be used for
resolving the service.

• ServiceDescription(String name, IServiceResolver serviceResolver)

Create a service description. The name is as above. The serviceResolver provides a
reference to the service when its resolve() method is called (typically, by the client
performing a lookup).

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 48 of 60

After creating a ServiceDescription it must be registered with a Yellow Pages
instance. A service may be registered using multiple service descriptions; however, each
service description must be unique.

Performing a Yellow Pages Lookup

A lookup in the Naming Service returns a single object (service) for a unique name. A
Yellow Pages lookup returns zero or more ServiceDescriptions for a
DiscoveryRequest containing a DiscoveryRequestExpression. A Yellow Pages
lookup begins with creating the DiscoveryRequest and its associated
DiscoveryRequestExpression:

 DiscoveryRequest request = new DiscoveryRequest();
 DiscoveryRequestExpression expr = new DiscoveryRequestExpression();

The next step is to add one or more conditional sub-expressions to the
DiscoveryRequestExpression, typically using the ExpressionFactory helper class.
The below example adds an “equals” sub-expression to test for an attribute named
“myAttributeName” with a (String) value of “myAttributeValue”.

 expr.add(ExpressionFactory.eq("myAttributeName",
"myAttributeValue"));

Each Yellow Pages instance in the Yellow Pages Directory will test its registered
ServiceDescriptions against this expression and return the matching
ServiceDescriptions.

In addition to specifying sub-expressions you can also optionally specify a time-to-live
and a maximum number of matching ServiceDescriptions to be returned:

 request.TimeToLive = 50 ;
 request.MinMatches = 4 ;

Finally, set the request expression in the DiscoveryRequest and ask the Yellow Pages
Directory to perform the lookup. This example uses the synchronous lookup, which
returns matches in the requesting thread:

 request.setRequestExpression(expr);
 ServiceDescription[] matches = yellowPages.lookup(request);

Once a list of matches has been returned, you can resolve the service itself by calling
resolveService():

 IMyService service = (IMyService) matches[0].resolveService();

The YellowPages Example demonstrates the Yellow Pages Directory.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 49 of 60

Using a Discovery Listener

Each Yellow Pages instance in a Yellow Pages Directory responds individually to a
discovery request. In some situations it is preferable to receive these responses
asynchronously. The IDiscoveryListener interface provides a callback mechanism to
receive responses to a discovery request. IDiscoveryListener has two methods:

 void receiveServiceDescriptions(ServiceDescription[] descriptions);

The receiveServiceDescriptions() method is called when a Yellow Pages instance
returns zero or more ServiceDescriptions in response to a discovery request. There is
no guarantee on how many times this method is called or how many
ServiceDescriptions will be passed to the listener.

 void lookupComplete();

This method is called when the discovery request is considered complete due to an
expiring time-to-live, receiving the maximum number of ServiceDescriptions, or
receiving a response from all Yellow Pages instances in the Yellow Pages Directory.

To use a discovery listener, implement the IDiscoveryListener interface and provide
the implementation to the asynchronous version of lookup():

 IDiscoveryListener myListener = new MyDiscoveryListener();
 yellowPages.lookup(myDiscoveryRequest, myListener);

Because results are returned asynchronously, the call to lookup() returns immediately.

Using UDP as a messaging transport

Oneway, asynchronous, unreliable invocations can be made via UDP (unicast, multicast,
and broadcast). To use this transport, specify the “udp” protocol in the URL for
ServerContext's startServer(String url) method. Also within the URL, a “well-
known”, unique integer ID must be supplied, and additionally for a client, the full class
name for the interface or implementation class of the server object. For example:

//unicast (object ID is 99 for these examples, and
// client ID must match server ID)
ServerContext sc1 = voyagerContext.acquireServerContext(“sc 9000”);
sc1.startServer(“udp://localhost:9000/99”);
sc1.export(new ex.ServerObject(),“/99”);

ClientContext cc1 = voyagerContext.acquireClientContet(“sc 9000”);
cc1.openEndpoint(“udp://localhost:9000/99”);

//broadcast
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 50 of 60

cc1.getNamespace().lookup(“udp:/99;proxyClass=ex.ServerObject”);

//multicast
ServerContext sc2 = voyagerContext.acquireServerContext(“multi
9000”);
sc2.startServer(“udp://230.0.0.1:9000/99”);
sc2.export(new ex.ServerObject(), “/99”);
cc1.lookup(“udp:/99;proxyClass=ex.ServerObject”)
Proxy.export(new ex.ServerObject(), “udp://230.0.0.1:9000/99”);
ClientContext cc2 = voyagerContext.acquireClientContet(“multi 9000”);
cc2.openEndpoint(“udp://230.0.0.1:9000/99”);
exServerObject proxy =
cc2.getNamespace().lookup(“udp:/99;proxyClass=ex.ServerObject”);

Using custom object streamers
Data marshaling for a remote invocation parameter can be controlled by using a custom
object streamer. Custom object streamers implement the
recursionsw.voyager.messageprotocol.vrmp interface and are registered via
Vrmp.MessageStreamerRegistry.registerStreamer(<Type>, <IStreamer>)
For a complete example of use, please see examples.udp.MessageStreamerExample in
the csharp examples under installation directory.

Voyager Administration
Configuration and Management

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 51 of 60

Several of Voyager's internal settings can be modified at runtime using static methods.

In this chapter, you will learn to:

• Understand Voyager runtime properties

• Understand and use Connection Management policies

Understanding Voyager Properties
The following table summarizes Voyager's user-customizable properties. Each property
is case sensitive.

Property Value
recursionsw.voyager.tcp.use_ip_addressing true | false
console.logLevel silent | exceptions | verbose
console.enabledTopics topic1,[topic2,…]
recursionsw.voyager.space.subspaceConnectorMaxQueueSize int
recursionsw.voyager.space.subspaceConnectorLogging true | false
recursionsw.voyager.space.rescheduleSubspaceConnector true | false
recursionsw.voyager.space.subspaceConnectorDeliveryThreadWaitTime long
recursionsw.voyager.space.enableSubspaceConnectorMonitor true | false
recursionsw.voyager.space.subspaceConnectorMonitorTimerDelay long
recursionsw.voyager.space.subspaceConnectorDisableDelay long
recursionsw.voyager.space.subspaceConnectorDeactivateDelay long
recursionsw.voyager.space.subspaceConnectorExceptionThreshold int
recursionsw.voyager.space.enableSubspaceDebugDump true | false
recursionsw.voyager.space.subspaceDebugDumpPeriodicity long
recursionsw.voyager.vrmp.useSeparateSerialization true | false
recursionsw.voyager.vrmp.dgcCycleTime long
recursionsw.voyager.licenseKeyPath pathname
recursionsw.voyager.vrmp.enableVrmpLookahead true | false

• console.logLevel

This property allows the Console log level to be set. It is equivalent to the
Console.setEnabledTopics() method which, unlike Console.enableTopic(),
removes all enabled topics before enabling the requested topic. Available options are
silent, exceptions and verbose.

• console.enabledTopics

This property sets the enabled topics for Console logging. The value for this property is a
comma-separated list of strings.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 52 of 60

• recursionsw.voyager.tcp.use_ip_addressing

When this property is set to true, Voyager will use only IP addresses when sending a
proxy to a remote process, and not hostnames. This is required when the remote process
might not be able to resolve the local process hostname.

Connection Management
Voyager provides the ability to manage the connections underlying Voyager-to-Voyager
communications.

The recursionsw.voyager.transport.IConnectionManagementPolicy interface is
implemented to create a connection management policy. An instance of the policy is
created and registered with
Transport.registerConnectionManagementPolicy(String protocol,
IConnectionManagementPolicy policy). Once registered, the policy is queried for
the following actions:

• Creation of client connection to remote URL

• Creation of server connection to remote URL

• Idle of client connection

There is a small cost associated with managing connections. Every time a new connection
is desired, Voyager must examine the current policy to determine if the new connection is
allowed. The more complicated the policy restrictions are, the longer it will take to
analyze. Although in most cases this will not be noticeable, high-volume Voyager
networks may wish to carefully tune connection management parameters.

A client connection in Voyager is used when one ORB is initiating an invocation to a
remote object. A server connection is involved whenever an exported Proxy receives a
remote invocation request for a local object.

In this section, you will learn to:

• Understand connection management policies.

• Understand case policies.

• Establish case policies.

• Define policy listeners.

Understanding Connection Management Policies

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 53 of 60

Voyager connections are segregated into client connections and server connections. A
client connection has a logical association with a Proxy to a remote object, and sends
invocation requests. A server connection, logically associated with a local object
exported to remote Voyager servers, receives invocation requests.

Voyager provides two default connection management policies: recursionsw.voyager.
transport.impl.tcp.BasicConnectionManagementPolicy and
recursionsw.voyager.transport.impl.tcp.RangeConnectionManagementPolicy.
 BasicConnectionManagementPolicy applies a single CasePolicy to limit connections
to and from all remote VM’s. RangeConnectionManagementPolicy provides the
capability to associate a CasePolicy with a HostAddressRange, a range of addresses
and ports. When the policy is queried, the applicable CasePolicy's are used to determine
whether the operation will be allowed.

An instance of RangeTcpPolicy contains a collection of CasePolicy objects describing
the restrictions on connections between different Voyager VM’s according to their IP
addresses and ports. If a new connection would violate the set limits, then the requesting
thread will block until the new connection is allowed. Note that this could cause deadlock
problems if distributed objects recursively call methods upon one another such that they
use up all allowed connections.

Understanding Case Policies

A CasePolicy consists of several characteristics describing how connections should be
limited or disconnected.

Maximum Number of Server Connections

Server connections may be capped at a particular number. Server connections include
currently active connections accepting invocation requests as well as pending connections
awaiting a client to connect.

Maximum Number of Client Connections

Client connections may also be limited. Client connections deliver invocation requests to
remote objects.

Maximum Number of Idle Client Connections

A client connection is idle if it is not currently sending an invocation request or awaiting
a response from an invocation request. Idle client connections are pooled, allowing a
small number of connections to handle many proxies, as long as invocations are relatively
infrequent.

A server connection is idle if it is awaiting an invocation request.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 54 of 60

Client Connection Idle Time

A client connection can be given an idle time limit. If a client connection idles longer
than this limit, it will be removed from use and closed.

Server Connection Idle Time

A server connection can be given an idle time limit. If a server connection is idle longer
than this limit, it will be closed.

Establishing Case Policies for RangeConnectionManagementPolicy

Case policies must be added to a RangeTcpPolicy object which is then set as the policy
for a given ORB. The easiest way is often to obtain the current policy, modify it, then
establish the modified policy as the new ruling policy.

CasePolicy objects are managed by three methods on the RangeTcpPolicy class.

• public void setCasePolicy(HostAddressRange range, CasePolicy
casePolicy);

Sets the ruling CasePolicy for the given range of addresses. All connections that fall
within the given range will be subject to the restrictions of the new CasePolicy .

• public CasePolicy getCasePolicy(HostAddressRange range);
Retrieves the CasePolicy established for the given range of addresses. If no CasePolicy
is explicitly established, then the least-restrictive CasePolicy is returned, no connection
or idle time limits.

• public void removeCasePolicy(HostAddressRange range);
Removes any established CasePolicy for the given range of addresses.

A GlobalCasePolicy property also provides access to the global case policy ruling any
and all connections for the current Voyager server:

RangeTcpPolicy.GlobalCasePolicy = policy;

CasePolicy policy = RangeTcpPolicy.GlobalCasePolicy;

About HostAddressRange

A HostAddressRange represents a set of connection endpoints. The HostAddressRange
constructor takes a String value describing the host and port ranges for the set. Host
ranges may include asterisks as wildcards to indicate all matching values. Port ranges
may use a dash to indicate an inclusive range. For example:

10.1.0.1:2000 Specifies the endpoint at port 2000 on the machine with
Copyright © 2006-2011 Recursion Software, Inc.

All Rights Reserved

Page 55 of 60

the IP address 10.1.0.1

www.recursionsw.com:5000 Specifies the endpoint at port 5000 on the machine with
the IP address www.recursionsw.com

host.org:- Specifies all endpoints at any port on the machine with the
IP address host.org

*.recursionsw.com:1024-
5000

Specifies all endpoints with a port number between 1024
and 5000 (inclusive) on any machine whose IP address
ends with recursionsw.com

10.*.- Specifies all endpoints located at any port on any machine
whose IP address begins with 10

*.- All endpoints

Note that a machine always has an IP address in number format and usually has one in
name format. If you use HostAddressRanges with the name formats, then you may
experience delays when Voyager queries your system's Domain Name Service (DNS) to
resolve machine names. If this delay is too large, either use a faster DNS server or use the
#####number#### format for all HostAddressRange entries.

Examples

Setting the Global CasePolicy

To set a Voyager server to limit the number of client connections to 25 and the idle time
limit to 10 seconds.

IConnectionManagementPolicy policy = new
BasicConnectionManagementPolicy(25, CasePolicy.NO_LIMIT,
CasePolicy.NO_LIMIT, 10000);
Transport.registerConnectionManagementPolicy("tcp", policy
);

Setting Case Policies

To limit the number of client connections to the recursionsw.com space to 10 with 5-
second idle limits.

int NO_LIMIT = CasePolicy.NO_LIMIT;
RangeTcpPolicy rangePolicy = new RangeTcpPolicy();
IConnectionManagementPolicy managementPolicy = new
 RangeConnectionManagementPolicy(rangePolicy);
rangePolicy.setCasePolicy(new HostAddressRange(
 "*.recursionsw.com"), new CasePolicy(10, NO_LIMIT,
 NO_LIMIT, 5000));
Transport.registerConnectionManagementPolicy("tcp",
 managementPolicy);

To prevent idle connections to the 10.2.10.* subnet.
rangePolicy.setCasePolicy(new HostAddressRange(
 "10.2.10.*"), new CasePolicy(0, 0, 0, 0));

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 56 of 60

To limit the number of server connections that will be accepted on port 8000 to 7.
rangePolicy.setCasePolicy(new HostAddressRange("//:8000"
), new CasePolicy(NO_LIMIT, 7, NO_LIMIT, 0));

Sockets are generated by classes that implement the
recursionsw.voyager.transport.impl.tcp.socket.SocketFactory interface. That
interface has a single method with the following signature.

public Socket createClientSocket(SocketPolicy policy,
 String host, int port, InetAddress bindHost, int bindPort
) throws IOException;

A SocketPolicy provides the necessary configuration parameters for the the
SocketFactory. Its definition provides only the minimum required for TCP sockets, but
can easily be extended for custom implementations.

public abstract class SocketPolicy
{
 private long timeout = -1;

 public abstract String ShortName{get};
 public abstract String SocketFactoryClassName{get};

 virtual public int Timeout {
 get { return timeout; }
 set { timeout = value; }
 }
}

• ShortName returns a String that can be used for convenience naming.

• SocketFactoryClassName returns the typename of the SocketFactory class
used to create sockets governed by this policy type.

ServerSocket Policies

ServerSocket Policies also use the SocketPolicy class. In this case, the class names
that the SocketPolicy provides will refer to ServerSocket factories and configurations.
The one method in the ServerSocketFactory interface constructs ServerSocket
instances to be used by Voyager when accepting requests on certain ports:

public ServerSocket createServerSocket(SocketPolicy
 policy, IPAddress bindInterface, int bindPort, int
 backlog);

Note: Socket timeouts are not currently used by Voyager.

Adding Custom Sockets to Voyager

Voyager provides the recursionsw.voyager.transport.impl.tcp.TCPSocketPolicy
and the recursionsw.voyager.transport.impl.tcp.TCPServerSocketPolicy

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 57 of 60

classes. These classes implement basic TCP Sockets behavior. You may implement
SocketPolicy and ServerSocketPolicy to provide custom sockets for Voyager
connections.

Socket policies are managed by a singleton of the recursionsw.voyager.
transport.impl.tcp.socket.SocketPolicyManager class. This class manages the
association between a HostAddressRange and a SocketPolicy. To add or remove a
policy, you must first obtain the singleton instance of SocketPolicyManager, and then
call the appropriate method to register the socket policy. For example, socket policies
supporting data compression might be named ZipSocketPolicy and
ZipServerSocketPolicy. Assuming these are intended to be used as the default policy for
all connections, they can be registered as follows:

 SocketPolicyManager.Instance.SocketPolicy = new ZipSocketPolicy();
 SocketPolicyManager.Instance.ServerSocketPolicy = new
 ZipServerSocketPolicy();

Appendices
Appendix A – Compact Framework Deployment
When developing for the .NET Compact Framework, you must include the following
assemblies in your project:

Hessianmobileclient.dll
Voyager.CF.dll

You should also include an appropriate Voyager license key file in your deployment. The
license key file should be named license.properties and be included in your project. Set
the Build Action property to Content and the Copy to Output property to Copy if Newer.

Appendix B – Utilities
Overview

In this chapter, you will learn to:

1. Use the pgen4csharp utility to generate the source form of a proxy for a given
class.

2. Use the vgen utility to create interfaces from IDL that can be used for Voyager
programs that require interoperability between Java and .NET CF versions of
Voyager.

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 58 of 60

pgen4csharp

The pgen4csharp utility generates the C# proxy class source code for a given class.

Example:
% pgen4csharp -la stockmarket.dll examples.stockmarket.Stockmarket
Generates a proxy class for the type examples.stockmarket.Stockmarket in the
assembly stockmarket.dll.

The pgen4csharp utility will use .NET introspection to determine the interfaces each
specified type implements. For each specified type, a proxy class will be generated in C#
that implements the type’s interfaces.

The assembly or assemblies containing the types must be made visible to pgen4csharp
using the “-la” argument.

pgen4csharp Command Line Options
For a list of the pgen4csharp run-time options, run pgen4csharp from the command line
with no parameters. A description of each option follows.

Argument Example Description

-output <directory> -output gen-
proxies

Specify an output directory for proxy
classes (default is current directory)

-ns <namespace> -ns
myapp.proxies

Specify a namespace for proxy classes
(default is namespace of TypeName)

-la <assembly file> -la myapp.dll Load the specified assembly to resolve
types

-loglevel {silent,
info, verbose}

-loglevel
verbose Set the logging level

-c -c Generate class-based proxy (internal use)

-nooverwrite -nooverwrite Do not overwrite existing generated
proxy classes (default is to overwrite)

-expandns -expandns Generate proxy classes into an expanded
directory path based on the namespace

TypeName example.AClass Generate a proxy for the given type

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 59 of 60

vgen
The vgen utility will convert an IDL file into Java and C# interfaces that can then be used
for interoperability between Java and .NET environments. Note that this utility requires
JRE 1.4 or better to operate, as it relies on the Java Voyager implementation for
functionality.

Example:

% vgen [options] file.idl

Options for vgen are listed below.
Argument Example Description

-a <file> -a vgen-opts.txt Process lines in <file> as arguments

-d <path> -d vgen-generated Store packages relative to <path>

-I <path> -I idl-include Add to list of #include paths

-p <file> -p prefix.idl Process IDL files as if they were
prepended with <file>

-q -q Quiet mode

-v -v Verbose mode

-x -x –Xmx:512M Pass remaining arguments to the Java
interpreter

Copyright © 2006-2011 Recursion Software, Inc.
All Rights Reserved

Page 60 of 60

	Overview
	Preface
	Common Definitions
	Voyager Development Requirements
	Voyager Installation Directories
	Deploying Voyager Applications
	Contacting Technical Support

	Feature Summary
	Architectural Flexibility
	Voyager Features
	Remote-Enabling of Classes
	Remote Object Construction
	Dynamic Class Loading
	Remote Messaging
	Remote Exception Handling
	Distributed Garbage Collection
	Dynamic Aggregation™
	SOAP and WSDL Support
	Object Mobility
	Autonomous Intelligent Mobile Agents
	Task Management
	Advanced Messaging
	Security
	Naming Service
	Yellow Pages Directory
	Multicasting
	Publish-Subscribe
	Timers
	Multi-home Support
	TCP Connection Management

	Core Features
	Overview
	Using Interfaces for Distributed Computing
	Creating or Retrieving a ClientContext
	Creating or Retrieving a ServerContext
	Creating a Remote Object
	Sending Messages and Handling Exceptions
	Logging Information to the Console
	Understanding Distributed Garbage Collection
	DGC Notification
	DGC Discard Delay Configuration

	Using Naming Services
	Working with Proxies
	Special Methods

	Exporting Objects
	Working with Federated Directory Services
	Task and Thread Management
	Timers
	Clocking Time Intervals
	Using Timers and TimerEvents
	Constructing a Timer
	Setting a Timer
	Adding a Listener to a Timer

	Voyager .NET Compact Framework Basics
	Starting and Stopping a Voyager Program
	Type Resolution in .NET CF
	Understanding Assembly Loading

	Creating Proxy Classes
	Creating and Deploying a Voyager Smart Device Application
	Using Vgen to Generate Interfaces

	Advanced Features
	Advanced Messaging
	Invoking Messages Dynamically
	Synchronous Messages
	One-Way Messages
	Future Messages
	Retrieving Remote Results by Reference

	Dynamic Discovery
	Generic Application Programming Interface
	Using the Generic API
	Implementing Dynamic Discovery
	Using UDP Dynamic Discovery Implementation

	Using Multicast and Publish/Subscribe
	Understanding the Space Architecture
	Understanding the Space Implementation
	Using TCP Spaces
	Space Topologies
	Creating and Populating a Space

	Nested Spaces
	Subspace Event Listeners
	Multicasting
	Publishing and Subscribing Events
	Administering a Space

	Yellow Pages Directory
	Creating a Yellow Pages Directory
	Registering a Service
	Performing a Yellow Pages Lookup
	Using a Discovery Listener

	Using UDP as a messaging transport
	Using custom object streamers

	Voyager Administration
	Configuration and Management
	Understanding Voyager Properties
	Connection Management
	Understanding Connection Management Policies
	Understanding Case Policies
	Maximum Number of Server Connections
	Maximum Number of Client Connections
	Maximum Number of Idle Client Connections
	Client Connection Idle Time
	Server Connection Idle Time
	Establishing Case Policies for RangeConnectionManagementPolicy
	About HostAddressRange
	Examples
	Setting the Global CasePolicy
	Setting Case Policies
	ServerSocket Policies
	Adding Custom Sockets to Voyager

	Appendices
	Appendix A – Compact Framework Deployment
	Appendix B – Utilities
	Overview
	pgen4csharp
	pgen4csharp Command Line Options

	vgen

